About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 856325, 10 pages
http://dx.doi.org/10.1155/2013/856325
Research Article

DeGNServer: Deciphering Genome-Scale Gene Networks through High Performance Reverse Engineering Analysis

1Bioinformatics Lab, Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
2School of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
3Department of Computer Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA

Received 22 August 2013; Accepted 1 October 2013

Academic Editor: Zhongming Zhao

Copyright © 2013 Jun Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Parkinson, U. Sarkans, M. Shojatalab et al., “ArrayExpress—a public repository for microarray gene expression data at the EBI,” Nucleic Acids Research, vol. 33, pp. D553–D555, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Barrett, D. B. Troup, S. E. Wilhite et al., “NCBI GEO: mining tens of millions of expression profiles—database and tools update,” Nucleic Acids Research, vol. 35, no. 1, pp. D760–D765, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Wei, S. Persson, T. Mehta et al., “Transcriptional coordination of the metabolic network in arabidopsis,” Plant Physiology, vol. 142, no. 2, pp. 762–774, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. X. L. Zhu, Z. H. Ai, J. Wang, Y. L. Xu, and Y. C. Teng, “Weighted gene co-expression network analysis in identification of endometrial cancer prognosis markers,” Asian Pacific Journal Cancer Prevention, vol. 13, no. 9, pp. 4607–4611, 2012.
  5. A. P. Presson, E. M. Sobel, J. C. Papp et al., “Integrated weighted gene co-expression network analysis with an application to chronic fatigue syndrome,” BMC Systems Biology, vol. 2, article 95, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Nie, R. Stewart, F. Ruan et al., “TF-cluster: a pipeline for identifying functionally coordinated transcription factors via network decomposition of the Shared Coexpression Connectivity Matrix (SCCM),” BMC Systems Biology, vol. 5, article 53, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Kumari, R. Stewart, J. Nie, et al., “Evaluation of gene association methods for coexpression network construction and biological knowledge discovery,” PLoS ONE, vol. 7, no. 11, Article ID e50411, 2012. View at Publisher · View at Google Scholar
  8. A. A. Margolin, I. Nemenman, K. Basso et al., “ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context,” BMC Bioinformatics, vol. 7, supplement 1, article S7, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. J. J. Faith, B. Hayete, J. T. Thaden et al., “Large-scale mapping and validation of escherichia coli transcriptional regulation from a compendium of expression profiles,” PLoS Biology, vol. 5, no. 1, article e8, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Li, H. Wei, T. Liu, and P. X. Zhao, “GPLEXUS: enabling genome-scale gene association network reconstruction and analysis for very large-scale expression data,” Nucleic Acids Research, 2013. View at Publisher · View at Google Scholar
  11. K.-C. Li, “Genome-wide coexpression dynamics: theory and application,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 26, pp. 16875–16880, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Horvath and J. Dong, “Geometric interpretation of gene coexpression network analysis,” PLoS Computational Biology, vol. 4, no. 8, Article ID e1000117, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Madar, A. Greenfield, E. Vanden-Eijnden, and R. Bonneau, “DREAM3: network inference using dynamic context likelihood of relatedness and the inferelator,” PloS ONE, vol. 5, no. 3, Article ID e9803, 2010. View at Publisher · View at Google Scholar
  14. A. Nazri and P. Lio, “Investigating meta-approaches for reconstructing gene networks in a mammalian cellular context,” PLoS ONE, vol. 7, no. 1, Article ID e28713, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Xiong, D. Yuan, J. S. Fillingham et al., “Gene network landscape of the ciliate tetrahymena thermophila,” PLoS ONE, vol. 6, no. 5, Article ID e20124, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Michoel, R. de Smet, A. Joshi, Y. van de Peer, and K. Marchal, “Comparative analysis of module-based versus direct methods for reverse-engineering transcriptional regulatory networks,” BMC Systems Biology, vol. 3, article 49, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Wang, C. Zhang, D. J. Hearn et al., “Identification of transcription-factor genes expressed in the arabidopsis female gametophyte,” BMC Plant Biology, vol. 10, article 110, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Osorno and I. Chambers, “Transcription factor heterogeneity and epiblast pluripotency,” Philosophical Transactions of the Royal Society B, vol. 366, article 1575, pp. 2230–2237, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Linnekin, L. S. Park, and W. L. Farrar, “Dissociation of human cytokine receptor expression and signal transduction,” Blood, vol. 80, no. 8, pp. 1896–1904, 1992. View at Scopus
  20. S. Edwards, “Elements of information theory, 2nd edition,” Information Processing & Management, vol. 44, no. 1, pp. 400–401, 2008.
  21. X. Hu and F.-X. Wu, “Mining and state-space modeling and verification of sub-networks from large-scale biomolecular networks,” BMC Bioinformatics, vol. 8, article 324, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Aluru, J. Zola, D. Nettleton, S. Aluru, et al., “Reverse engineering and analysis of large genome-scale gene networks,” Nucleic Acids Research, vol. 41, no. 1, article e24, 2013.
  23. R. R. Wilcox, “A note on the Theil-Sen regression estimator when the regresser is random and the error term is heteroscedastic,” Biometrical Journal, vol. 40, no. 3, pp. 261–268, 1998. View at Scopus
  24. I. G. Lyakhov, A. Krishnamachari, and T. D. Schneider, “Discovery of novel tumor suppressor p53 response elements using information theory,” Nucleic Acids Research, vol. 36, no. 11, pp. 3828–3833, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. D. N. Reshef, Y. A. Reshef, H. K. Finucane et al., “Detecting novel associations in large data sets,” Science, vol. 334, no. 6062, pp. 1518–1524, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Kohl, S. Wiese, and B. Warscheid, “Cytoscape: software for visualization and analysis of biological networks,” Methods in Molecular Biology, vol. 696, pp. 291–303, 2011. View at Scopus
  27. T. van den Bulcke, K. van Leemput, B. Naudts et al., “SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms,” BMC Bioinformatics, vol. 7, article 43, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Baldi, S. Brunak, Y. Chauvin, C. A. F. Andersen, and H. Nielsen, “Assessing the accuracy of prediction algorithms for classification: an overview,” Bioinformatics, vol. 16, no. 5, pp. 412–424, 2000. View at Scopus
  29. R. A. Irizarry, B. Hobbs, F. Collin et al., “Exploration, normalization, and summaries of high density oligonucleotide array probe level data,” Biostatistics, vol. 4, no. 2, pp. 249–264, 2003. View at Scopus
  30. J. Yu, M. A. Vodyanik, K. Smuga-Otto et al., “Induced pluripotent stem cell lines derived from human somatic cells,” Science, vol. 318, no. 5858, pp. 1917–1920, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. T. Watabe, “Roles of Dppa2 in the regulation of the present status and future of pluripotent stem cells,” Journal of Biochemistry, vol. 152, no. 1, pp. 1–3, 2012. View at Publisher · View at Google Scholar
  32. Y. S. Chan, J. Göke, X. Lu, et al., “A PRC2-dependent repressive role of PRDM14 in human embryonic stem cells and induced pluripotent stem cell reprogramming,” Stem Cells, vol. 31, no. 4, pp. 682–692, 2012.
  33. I. Barbaric and N. J. Harrison, “Rediscovering pluripotency: from teratocarcinomas to embryonic stem cells. Cardiff, 10–12 October 2011,” The International Journal of Developmental Biology, vol. 56, no. 4, pp. 197–206, 2012. View at Publisher · View at Google Scholar
  34. P. S. Ramos, S. Sajuthi, C. D. Langefeld, et al., “Immune function genes CD99L2, JARID2 and TPO show association with autism spectrum disorder,” Molecular Autism, vol. 3, no. 1, article 4, 2012. View at Publisher · View at Google Scholar
  35. L. A. Boyer, I. L. Tong, M. F. Cole et al., “Core transcriptional regulatory circuitry in human embryonic stem cells,” Cell, vol. 122, no. 6, pp. 947–956, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Calloni, E. A. Cordero, J. A. Henriques, D. Bonatto, et al., “Reviewing and updating the major molecular markers for stem cells,” Stem Cells and Development, vol. 22, no. 9, pp. 1455–1476, 2013. View at Publisher · View at Google Scholar
  37. M. Kim, T.-W. Kang, H.-C. Lee et al., “Identification of DNA methylation markers for lineage commitment of in vitro hepatogenesis,” Human Molecular Genetics, vol. 20, no. 14, pp. 2722–2733, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Persson, H. Wei, J. Milne, G. P. Page, and C. R. Somerville, “Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 24, pp. 8633–8638, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. D. Srivastava, “Making or breaking the heart: from lineage determination to morphogenesis,” Cell, vol. 126, no. 6, pp. 1037–1048, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. J. W. Vincentz, R. M. Barnes, B. A. Firulli, and S. J. Conway, “Cooperative interaction of Nkx2.5 and Mef2c transcription factors during heart development,” Developmental Dynamics, vol. 237, no. 12, pp. 3809–3819, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. O. W. J. Prall, M. K. Menon, M. J. Solloway et al., “An Nkx2-5/Bmp2/Smad1 negative feedback loop controls heart progenitor specification and proliferation,” Cell, vol. 128, no. 5, pp. 947–959, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Takeda, L. E. Briggs, H. Wakimoto et al., “Slow progressive conduction and contraction defects in loss of Nkx2-5 mice after cardiomyocyte terminal differentiation,” Laboratory Investigation, vol. 89, no. 9, pp. 983–993, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. I. Lyons, L. M. Parsons, L. Hartley et al., “Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5,” Genes and Development, vol. 9, no. 13, pp. 1654–1666, 1995. View at Scopus
  44. S. Nowotschin, J. Liao, P. J. Gage, J. A. Epstein, M. Campione, and B. E. Morrow, “Tbx1 affects asymmetric cardiac morphogenesis by regulating Pitx2 in the secondary heart field,” Development, vol. 133, no. 8, pp. 1565–1573, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Théveniau-Ruissy, M. Dandonneau, K. Mesbah et al., “The del22q11.2 candidate gene Tbx1 controls regional outflow tract identity and coronary artery patterning,” Circulation Research, vol. 103, no. 2, pp. 142–148, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. Z. Zhang and A. Baldini, “In vivo response to high-resolution variation of Tbx1 mRNA dosage,” Human Molecular Genetics, vol. 17, no. 1, pp. 150–157, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Merscher, B. Funke, J. A. Epstein et al., “TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome,” Cell, vol. 104, no. 4, pp. 619–629, 2001. View at Publisher · View at Google Scholar · View at Scopus
  48. C. A. Risebro, R. G. Searles, A. A. D. Melville et al., “Prox1 maintains muscle structure and growth in the developing heart,” Development, vol. 136, no. 3, pp. 495–505, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. C. A. Risebro, L. K. Petchey, N. Smart, et al., “Epistatic rescue of Nkx2. 5 adult cardiac conduction disease phenotypes by prospero-related homeobox protein 1 and HDAC3,” Circulation Research, vol. 111, no. 2, pp. e19–e31, 2012. View at Publisher · View at Google Scholar
  50. K. Song, J. Backs, J. McAnally et al., “The transcriptional coactivator CAMTA2 stimulates cardiac growth by opposing class II histone deacetylases,” Cell, vol. 125, no. 3, pp. 453–466, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. H. Lickert, J. K. Takeuchi, I. Von Both et al., “Baf60c is essential for function of BAF chromatin remodelling complexes in heart development,” Nature, vol. 432, no. 7013, pp. 107–112, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. S. A. Miller, S. E. Mohn, and A. S. Weinmann, “Jmjd3 and UTX play a demethylase-independent role in chromatin remodeling to regulate t-box family member-dependent gene expression,” Molecular Cell, vol. 40, no. 4, pp. 594–605, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. Y. Tian, L. Yuan, A. M. Goss et al., “Characterization and in vivo pharmacological rescue of a Wnt2-Gata6 pathway required for cardiac inflow tract development,” Developmental Cell, vol. 18, no. 2, pp. 275–287, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. D.-Z. Wang, P. S. Chang, Z. Wang et al., “Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor,” Cell, vol. 105, no. 7, pp. 851–862, 2001. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Wu, D. Zhou, C. Deng, X. Wu, L. Long, and Y. Xiong, “Characterization of porcine ENO3: genomic and cDNA structure, polymorphism and expression,” Genetics Selection Evolution, vol. 40, no. 5, pp. 563–579, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. X. Li, L. Tu, P. G. Murphy, T. Kadono, D. A. Steeber, and T. F. Tedder, “CHST1 and CHST2 sulfotransferase expression by vascular endothelial cells regulates shear-resistant leukocyte rolling via L-selectin,” Journal of Leukocyte Biology, vol. 69, no. 4, pp. 565–574, 2001. View at Scopus
  57. X. Li and T. F. Tedder, “CHST1 and CHST2 sulfotransferases expressed by human vascular endothelial cells: cDNA cloning, expression, and chromosomal localization,” Genomics, vol. 55, no. 3, pp. 345–347, 1999. View at Publisher · View at Google Scholar · View at Scopus
  58. T. Hibuse, N. Maeda, H. Nakatsuji et al., “The heart requires glycerol as an energy substrate through aquaporin 7, a glycerol facilitator,” Cardiovascular Research, vol. 83, no. 1, pp. 34–41, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Gambert, C. Héliès-Toussaint, and A. Grynberg, “Regulation of intermediary metabolism in rat cardiac myocyte by extracellular glycerol,” Biochimica et Biophysica Acta, vol. 1736, no. 2, pp. 152–162, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. M.-C. Ting, N. L. Wu, P. G. Roybal et al., “EphA4 as an effector of Twist1 in the guidance of osteogenic precursor cells during calvarial bone growth and in craniosynostosis,” Development, vol. 136, no. 5, pp. 855–864, 2009. View at Publisher · View at Google Scholar · View at Scopus