About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 859085, 11 pages
http://dx.doi.org/10.1155/2013/859085
Research Article

Amelioration of Prallethrin-Induced Oxidative Stress and Hepatotoxicity in Rat by the Administration of Origanum majorana Essential Oil

1Environmental Toxicology Research Unit (ETRU), Pesticide Chemistry Department, National Research Centre (NRC), Tahrir Street, Dokki, Giza, Egypt
2Department of Biochemistry, National Research Centre (NRC), Tahrir Street, Dokki, Giza, Egypt
3Université de Toulouse, Faculté de Pharmacie de Toulouse, Université Paul-Sabatier, Laboratoire des IMRCP-UMR CNRS-UPS 5623, Cedex 9, 31062 Toulouse, France

Received 18 July 2013; Revised 1 November 2013; Accepted 1 November 2013

Academic Editor: Robert J. Lee

Copyright © 2013 Abdel-Tawab H. Mossa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Pauluhn, “Hazard identification and risk assessment of pyrethroids in the indoor environment,” Toxicology Letters, vol. 107, no. 1–3, pp. 193–199, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Aprea, A. Stridori, and G. Sciarra, “Analytical method for the determination of urinary 3-phenoxybenzoic acid in subjects occupationally exposed to pyrethroid insecticides,” Journal of Chromatography B, vol. 695, no. 2, pp. 227–236, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. S. S. Anand, K.-B. Kim, S. Padilla et al., “Ontogeny of hepatic and plasma metabolism of deltamethrin in vitro: role in age-dependent acute neurotoxicity,” Drug Metabolism and Disposition, vol. 34, no. 3, pp. 389–397, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. W. N. Aldridge, “An assessment of the toxicological properties of pyrethroids and their neurotoxicity,” Critical Reviews in Toxicology, vol. 21, no. 2, pp. 89–104, 1990. View at Scopus
  5. H. P. M. Vijverberg, J. M. van der Zalm, and J. van Den Bercken, “Similar mode of action of pyrethroids and DDT on sodium channel gating in myelinated nerves,” Nature, vol. 295, no. 5850, pp. 601–603, 1982. View at Publisher · View at Google Scholar · View at Scopus
  6. S. P. Bradbury and J. R. Coats, “Comparative toxicology of the pyrethroid insecticides,” Reviews of Environmental Contamination and Toxicology, vol. 108, pp. 133–177, 1989. View at Scopus
  7. S. N. Mandhane and C. T. Chopde, “Neurobehavioral effects of low level fenvalerate exposure in mice,” Indian Journal of Experimental Biology, vol. 35, no. 6, pp. 623–627, 1997. View at Scopus
  8. O. López, A. F. Hernández, L. Rodrigo et al., “Changes in antioxidant enzymes in humans with long-term exposure to pesticides,” Toxicology Letters, vol. 171, no. 3, pp. 146–153, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Glass, “Chronic and long-term effects of pesticides use in agriculture: current knowledge and limits,” Toxicology Letters, vol. 180, p. S21, 2008.
  10. F. Michelangeli, M. J. Robson, J. M. East, and A. G. Lee, “The conformation of pyrethroids bound to lipid bilayers,” Biochimica et Biophysica Acta, vol. 1028, no. 1, pp. 49–57, 1990. View at Publisher · View at Google Scholar · View at Scopus
  11. F. M. El-Demerdash, “Lambda-cyhalothrin-induced changes in oxidative stress biomarkers in rabbit erythrocytes and alleviation effect of some antioxidants,” Toxicology in Vitro, vol. 21, no. 3, pp. 392–397, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Fetoui, E. M. Garoui, F. Makni-ayadi, and N. Zeghal, “Oxidative stress induced by lambda-cyhalothrin (LTC) in rat erythrocytes and brain: attenuation by vitamin C,” Environmental Toxicology and Pharmacology, vol. 26, no. 2, pp. 225–231, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. D. R. Livingstone, “Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms,” Marine Pollution Bulletin, vol. 42, no. 8, pp. 656–666, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. S. N. Sarkar, S. V. Balasubramanian, and S. K. Sikdar, “Effect of fenvalerate, a pyrethroid insecticide on membrane fluidity,” Biochimica et Biophysica Acta, vol. 1147, no. 1, pp. 137–142, 1993. View at Publisher · View at Google Scholar · View at Scopus
  15. M. C. Antunes-Madeira, R. A. Videira, and V. M. C. Madeira, “Effects of parathion on membrane organization and its implications for the mechanisms of toxicity,” Biochimica et Biophysica Acta, vol. 1190, no. 1, pp. 149–154, 1994. View at Publisher · View at Google Scholar · View at Scopus
  16. S. A. Mansour and A.-T. H. Mossa, “Lipid peroxidation and oxidative stress in rat erythrocytes induced by chlorpyrifos and the protective effect of zinc,” Pesticide Biochemistry and Physiology, vol. 93, no. 1, pp. 34–39, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. M. A. Perez-Albarsanz, P. Lopez-Aparicio, S. Senar, and M. N. Recio, “Effects of lindane on fluidity and lipid composition in rat renal cortex membranes,” Biochimica et Biophysica Acta, vol. 1066, no. 2, pp. 124–130, 1991. View at Publisher · View at Google Scholar · View at Scopus
  18. O. T. Jones and A. G. Lee, “Effects of pyrethroids on the activity of a purified (Ca2+-Mg2+)-ATPase,” Pesticide Biochemistry and Physiology, vol. 25, no. 3, pp. 420–430, 1986. View at Scopus
  19. S. A. Mansour and A.-T. H. Mossa, “Oxidative damage, biochemical and histopathological alterations in rats exposed to chlorpyrifos and the antioxidant role of zinc,” Pesticide Biochemistry and Physiology, vol. 96, no. 1, pp. 14–23, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. S. A. Mansour and A. H. Mossa, “Adverse effects of lactational exposure to chlorpyrifos in suckling rats,” Human and Experimental Toxicology, vol. 29, no. 2, pp. 77–92, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. M. M. Matsunaga, A. Higo, I. Nishibe, K. A. Dohara, and J. Shinjo, “Studies on prallethrin, a new synthetic pyrethroid for indoor applications. The insecticidal activities of prallethrin,” Japanese Journal of Sanitary Zoology, vol. 38, pp. 219–223, 1987.
  22. A. Akhtar, A. A. Deshmukh, C. G. Raut, A. P. Somkuwar, and S. S. Bhagat, “Prallethrin induced serum biochemical changes in Wistar rats,” Pesticide Biochemistry and Physiology, vol. 102, no. 2, pp. 160–168, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. C. O. van Den Broucke and J. A. Lemli, “Antispasmodic activity of Origanum compactum,” Planta Medica, vol. 38, no. 4, pp. 317–331, 1980. View at Scopus
  24. A. Y. Leung, Encyclopedia of Common Natural Ingredients Used in Food Drugs and Cosmetics, John Wiley & Sons, New York, NY, USA, 1980.
  25. M. H. Assaf, A. A. Ali, and M. A. Makboul, “Preliminary study of phenolic glycosides from Origanum majorana; quantitative estimation of arbutin; cytotoxic activity of hydroquinone,” Planta Medica, vol. 53, no. 4, pp. 343–345, 1987. View at Scopus
  26. J. E. Simon, A. F. Chadwick, and L. E. Craker, “An indexed Bibliography 1971–1980. The scientific literature on selected herbs and aromatic and medicinal plants of temperate zone,” in Archon Books, C. T. Hamden, Ed., p. 770, 1984.
  27. A. T. H. Mossa and G. A. M. Nawwar, “Free radical scavenging and antiacetylcholinesterase activities of Origanum majorana L. essential oil,” Human and Experimental Toxicology, vol. 30, no. 10, pp. 1501–1513, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. C. D. S. Tomlin, The e-Pesticide Manual, The British Crop Protection Council, Farnham, UK, 13th edition, 2004.
  29. I. M. El-Ashmawy, A. F. El-Nahas, and O. M. Salama, “Protective effect of volatile oil, alcoholic and aqueous extracts of Origanum majorana on lead acetate toxicity in mice,” Basic and Clinical Pharmacology and Toxicology, vol. 97, no. 4, pp. 238–243, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Reitman and S. Frankel, “A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases,” American Journal of Clinical Pathology, vol. 28, no. 1, pp. 56–63, 1957. View at Scopus
  31. D. S. Young, L. C. Pestaner, and V. Gibberman, “Effects of drugs on clinical laboratory tests,” Clinical Chemistry, vol. 21, no. 5, pp. D431–D432, 1975. View at Scopus
  32. K. Satoh, “Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method,” Clinica Chimica Acta, vol. 90, no. 1, pp. 37–43, 1978. View at Scopus
  33. M. Nishikimi, N. Appaji Rao, and K. Yagi, “The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen,” Biochemical and Biophysical Research Communications, vol. 46, no. 2, pp. 849–854, 1972. View at Scopus
  34. H. Aebi, “Catalase in vitro,” Methods in Enzymology, vol. 105, pp. 121–126, 1984. View at Publisher · View at Google Scholar · View at Scopus
  35. W. H. Habig, M. J. Pabst, and W. B. Jakoby, “Glutathione S transferases. The first enzymatic step in mercapturic acid formation,” The Journal of Biological Chemistry, vol. 249, no. 22, pp. 7130–7139, 1974. View at Scopus
  36. A. G. Gornall, C. J. Bardawill, and M. M. David, “Determination of serum proteins by means of the biuret reaction,” The Journal of Biological Chemistry, vol. 177, no. 2, pp. 751–766, 1949. View at Scopus
  37. J. D. Michael, The Toxicologist's Pocket Handbook, New York, NY, USA, Informa Healthcare USA, 2nd edition, 2008.
  38. A. R. Shakoori, S. S. Ali, and M. A. Saleem, “Effects of six months' feeding of cypermethrin on the blood and liver of albino rats,” Journal of Biochemical Toxicology, vol. 3, pp. 59–71, 1988. View at Scopus
  39. P. K. Gupta and S. Kumar, “Cumulative toxicity of deltamethrin in mice,” Journal of Environmental Biology, vol. 12, no. 1, pp. 45–50, 1991. View at Scopus
  40. V. K. Singh, P. Dixit, and P. N. Saxena, “Cybil induced hepatobiochemical changes in wistar rats,” Journal of Environmental Biology, vol. 26, no. 4, pp. 725–727, 2005. View at Scopus
  41. Extoxnet (Extension Toxicology Network), Cypermethrin, Cooperative Extension offices of Cornell University, Michigan State University, Oregon State University, and University of California, Davis, 1993.
  42. C. E. Grue, “Response of common grackles to dietary concentrations of four organophosphate pesticides,” Archives of Environmental Contamination and Toxicology, vol. 11, no. 5, pp. 617–626, 1982. View at Publisher · View at Google Scholar · View at Scopus
  43. A. H. Mossa, Genotoxicity of pesticides [Ph.D. thesis], Pesticide Chemistry and Toxicology, Faculty of Agriculture, Damanhour, Alexandria University, 2004.
  44. A. H. Mossa, A. A. Refaie, and A. Ramadan, “Effect of exposure to mixture of four organophosphate insecticides at no observed adverse effect level dose on rat liver: the protective role of vitamin C,” Research Journal of Environmental Toxicology, vol. 5, no. 6, pp. 323–335, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. A. C. Guyton and J. E. Hall, Text Book of Medical Physiology, Prism Book, Bangalore, India, 9th edition, 1996.
  46. E. A. Hodgson, Textbook of Modern Toxicology, John Wiley & Sons, Hoboken, NJ, USA, 3rd edition, 2004.
  47. R. B. Hayes, A. Sheffet, and R. Spirtas, “Cancer mortality among a cohort of chromium pigment workers,” American Journal of Industrial Medicine, vol. 16, no. 2, pp. 127–133, 1989. View at Scopus
  48. C. A. Burtes and E. R. Ashwood, Text Book of Clinical Chemistry, W. B. Sunders, Philadelphia, Pa, USA, 1986.
  49. H. L. Cheng, Y. Y. Hu, R. P. Wang, C. Liu, P. Liu, and D. Y. Zhu, “Protective actions of salvianolic acid A on hepatocyte injured by peroxidation in vitro,” World Journal of Gastroenterology, vol. 6, no. 3, pp. 402–404, 2000. View at Scopus
  50. A. Akhtar, A. A. Deshmukh, C. G. Raut, A. P. Somkuwar, and S. S. Bhagat, “Prallethrin induced serum biochemical changes in Wistar rats,” Pesticide Biochemistry and Physiology, vol. 102, no. 2, pp. 160–168, 2012. View at Publisher · View at Google Scholar · View at Scopus
  51. M. A. Shah and P. K. Gupta, “Subacute toxicity studies on permethrin,” Indian Journal of Toxicology, vol. 8, no. 1, pp. 61–67, 2001.
  52. U. K. Garg, A. K. Pal, G. J. Jha, and S. B. Jadhao, “Haemato-biochemical and immuno-pathophysiological effects of chronic toxicity with synthetic pyrethroid, organophosphate and chlorinated pesticides in broiler chicks,” International Immunopharmacology, vol. 4, no. 13, pp. 1709–1722, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Abbassy and A. H. Mossa, “Haemato-biochemical effects of formulated and technical cypermethrin and deltamethrin insecticides in male rats,” Journal of Pharmacology and Toxicology, vol. 7, pp. 312–321, 2012.
  54. G. Singh, L. D. Sharma, A. H. Ahmad, and S. P. Singh, “Fenvalerate induced dermal toxicity in buffalo calves,” Journal of Applied Animal Research, vol. 16, no. 2, pp. 205–210, 1999. View at Scopus
  55. H. Xiao-hui, C. Liang-qi, C. Xi-ling, S. Kai, L. Yun-jian, and Z. Long-juan, “Polyphenol epigallocatechin-3-gallate inhibits oxidative damage and preventive effects on carbon tetrachloride-induced hepatic fibrosis,” The Journal of Nutritional Biochemistry, vol. 3, pp. 511–515, 2007.
  56. F. J. Giordano, “Oxygen, oxidative stress, hypoxia, and heart failure,” Journal of Clinical Investigation, vol. 115, no. 3, pp. 500–508, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. A. P. Rolo and C. M. Palmeira, “Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress,” Toxicology and Applied Pharmacology, vol. 212, no. 2, pp. 167–178, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. H. Jaeschke, “Reactive oxygen and mechanisms of inflammatory liver injury,” Journal of Gastroenterology and Hepatology, vol. 15, no. 7, pp. 718–724, 2000. View at Publisher · View at Google Scholar · View at Scopus
  59. S. A. Mansour and A.-T. H. Mossa, “Adverse effects of exposure to low doses of chlorpyrifos in lactating rats,” Toxicology and Industrial Health, vol. 27, no. 3, pp. 213–224, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. J. E. Klaunig and L. M. Kamendulis, “The Role of oxidative stress in carcinogenesis,” Annual Review of Pharmacology and Toxicology, vol. 44, pp. 239–267, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. A. Bokov, A. Chaudhuri, and A. Richardson, “The role of oxidative damage and stress in aging,” Mechanisms of Ageing and Development, vol. 125, no. 10-11, pp. 811–826, 2004. View at Publisher · View at Google Scholar · View at Scopus
  62. B. Giray, A. Gürbay, and F. Hincal, “Cypermethrin-induced oxidative stress in rat brain and liver is prevented by Vitamin E or allopurinol,” Toxicology Letters, vol. 118, no. 3, pp. 139–146, 2001. View at Publisher · View at Google Scholar · View at Scopus
  63. J. Rickard and M. E. Brodie, “Correlation of blood and brain levels of the neurotoxic pyrethroid deltamethrin with the onset of symptoms in rats,” Pesticide Biochemistry and Physiology, vol. 23, no. 2, pp. 143–156, 1985. View at Scopus
  64. J. D. Hayes and D. J. Pulford, “The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance,” Critical Reviews in Biochemistry and Molecular Biology, vol. 30, no. 6, pp. 445–600, 1995. View at Scopus
  65. P. M. Sinet and P. Garber, “Inactivation of the human CuZn superoxide dismutase during exposure to O2- and H2O2,” Archives of Biochemistry and Biophysics, vol. 212, no. 2, pp. 411–416, 1981. View at Scopus
  66. Y. Kono and I. Fridovich, “Superoxide radical inhibits catalase,” The Journal of Biological Chemistry, vol. 257, no. 10, pp. 5751–5754, 1982. View at Scopus
  67. K. H. Cheeseman, “Mechanisms and effects of lipid peroxidation,” Molecular Aspects of Medicine, vol. 14, no. 3, pp. 191–197, 1993. View at Publisher · View at Google Scholar · View at Scopus
  68. C. Sinha, K. Seth, F. Islam et al., “Behavioral and neurochemical effects induced by pyrethroid-based mosquito repellent exposure in rat offsprings during prenatal and early postnatal period,” Neurotoxicology and Teratology, vol. 28, no. 4, pp. 472–481, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. M. Kanbur, B. C. Liman, G. Eraslan, and S. Altinordulu, “Effects of cypermethrin, propetamphos, and combination involving cypermethrin and propetamphos on lipid peroxidation in mice,” Environmental Toxicology, vol. 23, no. 4, pp. 473–479, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. B. D. Banerjee, V. Seth, A. Bhattacharya, S. T. Pasha, and A. K. Chakraborty, “Biochemical effects of some pesticides on lipid peroxidation and free-radical scavengers,” Toxicology Letters, vol. 107, no. 1–3, pp. 33–47, 1999. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Abdollahi, A. Ranjbar, S. Shadnia, S. Nikfar, and A. Rezaie, “Pesticides and oxidative stress: a review,” Medical Science Monitor, vol. 10, no. 6, pp. RA141–RA147, 2004. View at Scopus
  72. M. Kale, N. Rathore, S. John, and D. Bhatnagar, “Lipid peroxidative damage on pyrethroid exposure and alterations in antioxidant status in rat erythrocytes: a possible involvement of reactive oxygen species,” Toxicology Letters, vol. 105, no. 3, pp. 197–205, 1999. View at Publisher · View at Google Scholar · View at Scopus
  73. K. Prasanthi, M. Muralidhara, and P. S. Rajini, “Fenvalerate-induced oxidative damage in rat tissues and its attenuation by dietary sesame oil,” Food and Chemical Toxicology, vol. 43, no. 2, pp. 299–306, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. N. Tuzmen, N. Candan, E. Kaya, and N. Demiryas, “Biochemical effects of chlorpyrifos and deltamethrin on altered antioxidative defense mechanisms and lipid peroxidation in rat liver,” Cell Biochemistry and Function, vol. 26, no. 1, pp. 119–124, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. M. I. Yousef, T. I. Awad, and E. H. Mohamed, “Deltamethrin-induced oxidative damage and biochemical alterations in rat and its attenuation by Vitamin E,” Toxicology, vol. 227, no. 3, pp. 240–247, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. G. Ruberto and M. T. Baratta, “Antioxidant activity of selected essential oil components in two lipid model systems,” Food Chemistry, vol. 69, no. 2, pp. 167–174, 2000. View at Publisher · View at Google Scholar · View at Scopus
  77. G. Singh, P. Marimuthu, C. S. de Heluani, and C. Catalan, “Antimicrobial and antioxidant potentials of essential oil and acetone extract of Myristica fragrans Houtt. (aril part),” Journal of Food Science, vol. 70, no. 2, pp. M141–M148, 2005. View at Scopus
  78. H.-J. Kim, F. Chen, C. Wu, X. Wang, H. Y. Chung, and Z. Jin, “Evaluation of antioxidant activity of australian tea tree (Melaleuca alternifolia) oil and its components,” Journal of Agricultural and Food Chemistry, vol. 52, no. 10, pp. 2849–2854, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. T. Sawa, M. Nakao, T. Akaike, K. Ono, and H. Maeda, “Alkylperoxyl radical-scavenging activity of various flavonoids and other phenolic compounds: implications for the anti-tumor-promoter effect of vegetables,” Journal of Agricultural and Food Chemistry, vol. 47, no. 2, pp. 397–402, 1999. View at Publisher · View at Google Scholar · View at Scopus
  80. Y. A. Leung, Encyclopedia of Common Natural Ingredients Used in Food Drug and Cosmetics, John Wiley & Sons, New York, NY, USA, 1980.
  81. M. H. Assaf, A. A. Ali, and M. A. Makboul, “Preliminary study of phenolic glycosides from Origanum majorana; quantitative estimation of arbutin; cytotoxic activity of hydroquinone,” Planta Medica, vol. 53, no. 4, pp. 343–345, 1987. View at Scopus
  82. J. Novak, J. Langbehn, F. Pank, and C. M. Franz, “Essential oil compounds in a historical sample of marjoram (Origanum majorana L., Lamiaceae),” Flavour and Fragrance Journal, vol. 17, no. 3, pp. 175–180, 2002. View at Publisher · View at Google Scholar · View at Scopus
  83. L. S. Roth, Mosby's Handbook of herbs and Natural Supplements, Mosby, A Harcort Health Sciences, 2001.
  84. J. L. Lamaison, C. Petitjean-Freytet, and A. Carnat, “Medicinal lamiaceae with antioxidative activities, potential sources of rosmarinic acid,” Pharmaceutica Acta Helvetiae, vol. 66, no. 7, pp. 185–188, 1991. View at Scopus
  85. A. Pieroni, V. Janiak, C. M. Dürr, S. Lüdeke, E. Trachsel, and M. Heinrich, “In vitro antioxidant activity of non-cultivated vegetables of ethnic Albanians in southern Italy,” Phytotherapy Research, vol. 16, no. 5, pp. 467–473, 2002. View at Publisher · View at Google Scholar · View at Scopus
  86. H. J. D. Dorman, O. Bachmayer, M. Kosar, and R. Hiltunen, “Antioxidant properties of aqueous extracts from selected lamiaceae species grown in Turkey,” Journal of Agricultural and Food Chemistry, vol. 52, no. 4, pp. 762–770, 2004. View at Publisher · View at Google Scholar · View at Scopus
  87. L. Aldana, V. Tsutsumi, A. Craignill, M. I. Silveria, and J. G. Eijia, Alpha Tocopherol Modulates Liver Toxicity of Pyrethroid Cypermethrin, Toxicology Letters, vol. 25, 2001.