About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 863720, 10 pages
http://dx.doi.org/10.1155/2013/863720
Research Article

7,8-Dihydroxyflavone Suppresses Oxidative Stress-Induced Base Modification in DNA via Induction of the Repair Enzyme 8-Oxoguanine DNA Glycosylase-1

1School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 690-756, Republic of Korea
2Department of Obstetrics and Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
3Aging Research Center, Korea Institute of Oriental Medicine, Daejeon 305-811, Republic of Korea
4Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
5Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 609-735, Republic of Korea

Received 25 May 2013; Revised 23 July 2013; Accepted 15 August 2013

Academic Editor: Peter Fu

Copyright © 2013 Ki Cheon Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Ravanat, M. Berger, F. Benard, et al., “Phthalocyanine and naphthalocyanine photosensitized oxidation of 2′-deoxyguanosine: distinct type I and type II products,” Photochemistry and Photobiology, vol. 39, no. 6, pp. 809–814, 1984.
  2. M. Honda, Y. Yamada, M. Tomonaga, H. Ichinose, and S. Kamihira, “Correlation of urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG), a biomarker of oxidative DNA damage, and clinical features of hematological disorders: a pilot study,” Leukemia Research, vol. 24, no. 6, pp. 461–468, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. J. W. Hyun, J. Y. Choi, H. H. Zeng et al., “Leukemic cell line, KG-1 has a functional loss of hOGG1 enzyme due to a point mutation and 8-hydroxydeoxyguanosine can kill KG-1,” Oncogene, vol. 19, no. 39, pp. 4476–4479, 2000. View at Scopus
  4. J. W. Hyun, Y. C. Jung, H. S. Kim et al., “8-Hydroxydeoxyguanosine causes death of human leukemia cells deficient in 8-oxoguanine glycosylase 1 activity by inducing apoptosis,” Molecular Cancer Research, vol. 1, no. 4, pp. 290–299, 2003. View at Scopus
  5. A. Kikuchi, A. Takeda, H. Onodera et al., “Systemic increase of oxidative nucleic acid damage in Parkinson's disease and multiple system atrophy,” Neurobiology of Disease, vol. 9, no. 2, pp. 244–248, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Matsui, C. Nishigori, S. Toyokuni et al., “The role of oxidative DNA damage in human arsenic carcinogenesis: detection of 8-hydroxy-2′-deoxyguanosine in arsenic-related Bowen's disease,” Journal of Investigative Dermatology, vol. 113, no. 1, pp. 26–31, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Sato, Y. Mizuno, and N. Hattori, “Urinary 8-hydroxydeoxyguanosine levels as a biomarker for progression of Parkinson disease,” Neurology, vol. 64, no. 6, pp. 1081–1083, 2005. View at Scopus
  8. L. L. Wu, C. Chiou, P. Chang, and J. T. Wu, “Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics,” Clinica Chimica Acta, vol. 339, no. 1-2, pp. 1–9, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Halliwell, “Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life,” Plant Physiology, vol. 141, no. 2, pp. 312–322, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Boiteux, T. R. O'Connor, F. Lederer, A. Gouyette, and J. Laval, “Homogeneous Escherichia coli FPG protein. A DNA glycosylase which excises imidazole ring-opened purines and nicks DNA at apurinic/apyrimidinic sites,” Journal of Biological Chemistry, vol. 265, no. 7, pp. 3916–3922, 1990. View at Scopus
  11. H. E. Krokan, H. Nilsen, F. Skorpen, M. Otterlei, and G. Slupphaug, “Base excision repair of DNA in mammalian cells,” FEBS Letters, vol. 476, no. 1-2, pp. 73–77, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Bogliolo, E. Cappelli, A. D'Osualdo et al., “Effect of S. cerevisiae APN1 protein on mammalian DNA base excision repair,” Anticancer Research, vol. 23, no. 5, pp. 3727–3734, 2003. View at Scopus
  13. N. C. de Souza-Pinto, L. Eide, B. A. Hogue et al., “Repair of 8-oxodeoxyguanosine lesions in mitochondrial DNA depends on the oxoguanine DNA glycosylase (OGG1) gene and 8-oxoguanine accumulates in the mitochondrial DNA of OGG1-defective mice,” Cancer Research, vol. 61, no. 14, pp. 5378–5381, 2001. View at Scopus
  14. A. Dhénaut, S. Boiteux, and J. P. Radicella, “Characterization of the hOGG1 promoter and its expression during the cell cycle,” Mutation Research, vol. 461, no. 2, pp. 109–118, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Ueta, E. Sasabe, Z. Yang, T. Osaki, and T. Yamamoto, “Enhancement of apoptotic damage of squamous cell carcinoma cells by inhibition of the mitochondrial DNA repairing system,” Cancer Science, vol. 99, no. 11, pp. 2230–2237, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. S. Keum, “Regulation of Nrf2-mediated phase II detoxification and anti-oxidant genes,” Biomolecules & Therapeutics, vol. 20, no. 2, pp. 144–151, 2012.
  17. K. Itoh, T. Chiba, S. Takahashi et al., “An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements,” Biochemical and Biophysical Research Communications, vol. 236, no. 2, pp. 313–322, 1997. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Nakaso, H. Yano, Y. Fukuhara, T. Takeshima, K. Wada-Isoe, and K. Nakashima, “PI3K is a key molecule in the Nrf2-mediated regulation of antioxidative proteins by hemin in human neuroblastoma cells,” FEBS Letters, vol. 546, no. 2-3, pp. 181–184, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Wang, Y. Chen, P. Sternberg, and J. Cai, “Essential roles of the PI3 kinase/Akt pathway in regulating Nrf2-dependent antioxidant functions in the RPE,” Investigative Ophthalmology and Visual Science, vol. 49, no. 4, pp. 1671–1678, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Tasdemir, M. Kaiser, R. Brun et al., “Antitrypanosomal and antileishmanial activities of flavonoids and their analogues: in vitro, in vivo, structure-activity relationship, and quantitative structure-activity relationship studies,” Antimicrobial Agents and Chemotherapy, vol. 50, no. 4, pp. 1352–1364, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Zhang, K. A. Kang, M. J. Piao et al., “Preventive effect of 7,8-dihydroxyflavone against oxidative stress induced genotoxicity,” Biological and Pharmaceutical Bulletin, vol. 32, no. 2, pp. 166–171, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. W. A. Pryor, K. Stone, L. Zang, and E. Bermúdez, “Fractionation of aqueous cigarette tar extracts: fractions that contain the tar radical cause DNA damage,” Chemical Research in Toxicology, vol. 11, no. 5, pp. 441–448, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. J. I. Murray, M. L. Whitfield, N. D. Trinklein, R. M. Myers, P. O. Brown, and D. Botstein, “Diverse and specific gene expression responses to stresses in cultured human cells,” Molecular Biology of the Cell, vol. 15, no. 5, pp. 2361–2374, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. K. A. Kang, K. H. Lee, S. Chae et al., “Eckol isolated from Ecklonia cava attenuates oxidative stress induced cell damage in lung fibroblast cells,” FEBS Letters, vol. 579, no. 28, pp. 6295–6304, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Struthers, R. Patel, J. Clark, and S. Thomas, “Direct detection of 8-oxodeoxyguanosine and 8-oxoguanine by avidin and its analogues,” Analytical Biochemistry, vol. 255, no. 1, pp. 20–31, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. K. J. Livak and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method,” Methods, vol. 25, no. 4, pp. 402–408, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Carmichael, W. G. DeGraff, and A. F. Gazdar, “Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing,” Cancer Research, vol. 47, no. 4, pp. 936–942, 1987. View at Scopus
  28. A. Valavanidis, T. Vlachogianni, and C. Fiotakis, “8-hydroxy-2′-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis,” Journal of Environmental Science and Health C, vol. 27, no. 2, pp. 120–139, 2009. View at Scopus
  29. P. Fortini, B. Pascucci, E. Parlanti, M. D'Errico, V. Simonelli, and E. Dogliotti, “8-Oxoguanine DNA damage: at the crossroad of alternative repair pathways,” Mutation Research, vol. 531, no. 1-2, pp. 127–139, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Mo, Y. Xia, T. J. Wade et al., “Chronic arsenic exposure and oxidative stress: OGG1 expression and arsenic exposure, nail selenium, and skin hyperkeratosis in inner Mongolia,” Environmental Health Perspectives, vol. 114, no. 6, pp. 835–841, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. S. S. David, V. L. O'Shea, and S. Kundu, “Base-excision repair of oxidative DNA damage,” Nature, vol. 447, no. 7147, pp. 941–950, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. M. V. Ruchko, O. M. Gorodnya, A. Zuleta, V. M. Pastukh, and M. N. Gillespie, “The DNA glycosylase Ogg1 defends against oxidant-induced mtDNA damage and apoptosis in pulmonary artery endothelial cells,” Free Radical Biology and Medicine, vol. 50, no. 9, pp. 1107–1113, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Liu, D. L. Croteau, N. Souza-Pinto et al., “Evidence that OGG1 glycosylase protects neurons against oxidative DNA damage and cell death under ischemic conditions,” Journal of Cerebral Blood Flow and Metabolism, vol. 31, no. 2, pp. 680–692, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Motohashi, F. Katsuoka, J. D. Engel, and M. Yamamoto, “Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1-Nrf2 regulatory pathway,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 17, pp. 6379–6384, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. M. McMahon, K. Itoh, M. Yamamoto, and J. D. Hayes, “Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression,” Journal of Biological Chemistry, vol. 278, no. 24, pp. 21592–21600, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. T. W. Kensler, N. Wakabayashi, and S. Biswal, “Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway,” Annual Review of Pharmacology and Toxicology, vol. 47, pp. 89–116, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. G. P. Sykiotis and D. Bohmann, “Stress-activated cap“n”collar transcription factors in aging and human disease,” Science Signaling, vol. 3, no. 112, p. re3, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. K. Itoh, K. I. Tong, and M. Yamamoto, “Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles,” Free Radical Biology and Medicine, vol. 36, no. 10, pp. 1208–1213, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Boutten, D. Goven, E. Artaud-Macari, J. Boczkowski, and M. Bonay, “NRF2 targeting: a promising therapeutic strategy in chronic obstructive pulmonary disease,” Trends in Molecular Medicine, vol. 17, no. 7, pp. 363–371, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. V. J. Thannickal and B. L. Fanburg, “Reactive oxygen species in cell signaling,” American Journal of Physiology, vol. 279, no. 6, pp. L1005–L1028, 2000. View at Scopus
  41. J. Pi, W. Qu, J. M. Reece, Y. Kumagai, and M. P. Waalkes, “Transcription factor Nrf2 activation by inorganic arsenic in cultured keratinocytes: involvement of hydrogen peroxide,” Experimental Cell Research, vol. 290, no. 2, pp. 234–245, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. J. W. Lee, J. M. Hanson, W. A. Chu, and J. A. Johnson, “Phosphatidylinositol 3-kinase, not extracellular signal-regulated kinase, regulates activation of the antioxidant-responsive element in IMR-32 human neuroblastoma cells,” Journal of Biological Chemistry, vol. 276, no. 23, pp. 20011–20016, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. D. Martin, A. I. Rojo, M. Salinas et al., “Regulation of heme oxygenase-1 expression through the phosphatidylinositol 3-kinase/Akt pathway and the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol,” Journal of Biological Chemistry, vol. 279, no. 10, pp. 8919–8929, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. Y. J. Surh, J. K. Kundu, and H. K. Na, “Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals,” Planta Medica, vol. 74, no. 13, pp. 1526–1539, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Papaiahgari, Q. Zhang, S. R. Kleeberger, H. Cho, and S. P. Reddy, “Hyperoxia stimulates an Nrf2-ARE transcriptional response via ROS-EGFR-P13K-Akt/ERK MAP kinase signaling in pulmonary epithelial cells,” Antioxidants and Redox Signaling, vol. 8, no. 1-2, pp. 43–52, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. J. E. Le Belle, N. M. Orozco, A. A. Paucar et al., “Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner,” Cell Stem Cell, vol. 8, no. 1, pp. 59–71, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. Ö. Erdogdu, D. Nathanson, Å. Sjöholm, T. Nyström, and Q. Zhang, “Exendin-4 stimulates proliferation of human coronary artery endothelial cells through eNOS-, PKA- and PI3K/Akt-dependent pathways and requires GLP-1 receptor,” Molecular and Cellular Endocrinology, vol. 325, no. 1-2, pp. 26–35, 2010. View at Publisher · View at Google Scholar · View at Scopus