About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 870795, 7 pages
http://dx.doi.org/10.1155/2013/870795
Research Article

Prediction of Gene Phenotypes Based on GO and KEGG Pathway Enrichment Scores

1Institute of Systems Biology, Shanghai University, 99 ShangDa Road, Shanghai 200444, China
2State Key Laboratory of Medical Genomics, Institute of Health Sciences, Shanghai Jiaotong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China
3College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
4College of Life Science, Shanghai University, 99 ShangDa Road, Shanghai 200444, China

Received 19 August 2013; Accepted 23 September 2013

Academic Editor: Tao Huang

Copyright © 2013 Tao Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. van Houtte, G. Picchio, K. van der Borght, T. Pattery, P. Lecocq, and L. T. Bacheler, “A comparison of HIV-1 drug susceptibility as provided by conventional phenotyping and by a phenotype prediction tool based on viral genotype,” Journal of Medical Virology, vol. 81, no. 10, pp. 1702–1709, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. A. V. Vasil'ev, E. V. Kazennova, and M. R. Bobkova, “Prediction of phenotype R5/X4 of HIV-1 variants circulating in Russia, by using computer methods,” Voprosy Virusologii, vol. 54, no. 3, pp. 17–21, 2009. View at Scopus
  3. S. Xu, X. Huang, H. Xu, and C. Zhang, “Improved prediction of coreceptor usage and phenotype of HIV-1 based on combined features of V3 loop sequence using random forest,” Journal of Microbiology, vol. 45, no. 5, pp. 441–446, 2007. View at Scopus
  4. H. Vermeiren, E. Van Craenenbroeck, P. Alen, L. Bacheler, G. Picchio, and P. Lecocq, “Prediction of HIV-1 drug susceptibility phenotype from the viral genotype using linear regression modeling,” Journal of Virological Methods, vol. 145, no. 1, pp. 47–55, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. T.-Y. Lin, J. T.-C. Chang, H.-M. Wang et al., “Proteomics of the radioresistant phenotype in head-and-neck cancer: GP96 as a novel prediction marker and sensitizing target for radiotherapy,” International Journal of Radiation Oncology Biology Physics, vol. 78, no. 1, pp. 246–256, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. T. F. Bathen, L. R. Jensen, B. Sitter et al., “MR-determined metabolic phenotype of breast cancer in prediction of lymphatic spread, grade, and hormone status,” Breast Cancer Research and Treatment, vol. 104, no. 2, pp. 181–189, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. S. R. Lakhani, J. S. Reis-Filho, L. Fulford et al., “Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype,” Clinical Cancer Research, vol. 11, no. 14, pp. 5175–5180, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Dwyer, J. M. Stankovich, L. Blizzard et al., “Does the addition of information on genotype improve prediction of the risk of melanoma and nonmelanoma skin cancer beyond that obtained from skin phenotype?” American Journal of Epidemiology, vol. 159, no. 9, pp. 826–833, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. L. A. Piruzyan, I. B. Korshunov, N. V. Morozova, N. E. Pyn'ko, and L. A. Radkevich, “Prediction of chronic liver diseases on the basis of the N-acetyltransferase 2 phenotype,” Doklady Biochemistry and Biophysics, vol. 395, no. 1–6, pp. 84–87, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. P. D. Whitfield, P. Nelson, P. C. Sharp et al., “Correlation among genotype, phenotype, and biochemical markers in Gaucher disease: implications for the prediction of disease severity,” Molecular Genetics and Metabolism, vol. 75, no. 1, pp. 46–55, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. G.-Z. Li, X. Wang, X. Hu, J.-M. Liu, and R.-W. Zhao, “Multilabel learning for protein subcellular location prediction,” IEEE Transactions on NanoBioscience, vol. 11, no. 3, pp. 237–243, 2012. View at Publisher · View at Google Scholar
  12. X. Wang and G.-Z. Li, “A multi-label predictor for identifying the subcellular locations of singleplex and multiplex eukaryotic proteins,” PLoS ONE, vol. 7, no. 5, Article ID e36317, 2012. View at Publisher · View at Google Scholar
  13. X. Wang, G.-Z. Li, and W.-C. Lu, “Virus-ECC-mPLoc: a multi-label predictor for predicting the subcellular localization of virus proteins with both single and multiple sites based on a general form of Chou's pseudo amino acid composition,” Protein and Peptide Letters, vol. 20, no. 3, pp. 309–317, 2013.
  14. B. L. Drees, V. Thorsson, G. W. Carter et al., “Derivation of genetic interaction networks from quantitative phenotype data,” Genome Biology, vol. 6, no. 4, p. R38, 2005. View at Scopus
  15. A. M. Dudley, D. M. Janse, A. Tanay, R. Shamir, and G. M. Church, “A global view of pleiotropy and phenotypically derived gene function in yeast,” Molecular Systems Biology, vol. 1, Article ID 2005.0001, 11 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Fire, S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, and C. C. Mello, “Potent and specific genetic interference by double-stranded RNA in caenorhabditis elegans,” Nature, vol. 391, no. 6669, pp. 806–811, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. E. A. Winzeler, H. Liang, D. D. Shoemaker, and R. W. Davis, “Functional analysis of the yeast genome by precise deletion and parallel phenotypic characterization,” Novartis Foundation Symposium, vol. 229, pp. 105–109, 2000, discussion 109–111. View at Scopus
  18. G. W. Carter, S. Prinz, C. Neou et al., “Prediction of phenotype and gene expression for combinations of mutations,” Molecular Systems Biology, vol. 3, p. 96, 2007. View at Scopus
  19. B. Scherens and A. Goffeau, “The uses of genome-wide yeast mutant collections,” Genome Biology, vol. 5, no. 7, article 229, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. K. L. McGary, I. Lee, and E. M. Marcotte, “Broad network-based predictability of Saccharomyces cerevisiae gene loss-of-function phenotypes,” Genome Biology, vol. 8, no. 12, article R258, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Cedano, P. Aloy, J. A. Perez-Pons, and E. Querol, “Relation between amino acid composition and cellular location of proteins,” Journal of Molecular Biology, vol. 266, no. 3, pp. 594–600, 1997. View at Publisher · View at Google Scholar · View at Scopus
  22. W. Resch, N. Hoffman, and R. Swanstrom, “Improved success of phenotype prediction of the human immunodeficiency virus type 1 from envelope variable loop 3 sequence using neural networks,” Virology, vol. 288, no. 1, pp. 51–62, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Pillai, B. Good, D. Richman, and J. Corbeil, “A new perspective on V3 phenotype prediction,” AIDS Research and Human Retroviruses, vol. 19, no. 2, pp. 145–149, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. U. Güldener, M. Münsterkötter, G. Kastenmüller et al., “CYGD: the comprehensive yeast genome database,” Nucleic Acids Research, vol. 33, pp. D364–D368, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Chen, W.-M. Zeng, Y.-D. Cai, K.-Y. Feng, and K.-C. Chou, “Predicting anatomical therapeutic chemical (ATC) classification of drugs by integrating chemical-chemical interactions and similarities,” PLoS ONE, vol. 7, no. 4, Article ID e35254, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Gao, Q. P. Wang, L. Chen, and T. Huang, “Prediction of human genes' regulatory functions based on proteinprotein interaction network,” Protein and Peptide Letters, vol. 19, no. 9, pp. 910–916, 2012.
  27. L. Hu, T. Huang, X. Shi, W.-C. Lu, Y.-D. Cai, and K.-C. Chou, “Predicting functions of proteins in mouse based on weighted protein-protein interaction network and protein hybrid properties,” PLoS ONE, vol. 6, no. 1, Article ID e14556, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. L.-L. Hu, T. Huang, Y.-D. Cai, and K.-C. Chou, “Prediction of body fluids where proteins are secreted into based on protein interaction network,” PLoS ONE, vol. 6, no. 7, Article ID e22989, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. P. Du, T. Li, and X. Wang, “Recent progress in predicting protein sub-subcellular locations,” Expert Review of Proteomics, vol. 8, no. 3, pp. 391–404, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Huang, L. Chen, Y.-D. Cai, and K.-C. Chou, “Classification and analysis of regulatory pathways using graph property, biochemical and physicochemical property, and functional property,” PLoS ONE, vol. 6, no. 9, Article ID e25297, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. T. Huang, J. Zhang, Z.-P. Xu et al., “Deciphering the effects of gene deletion on yeast longevity using network and machine learning approaches,” Biochimie, vol. 94, no. 4, pp. 1017–1025, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Peng, F. Long, and C. Ding, “Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 8, pp. 1226–1238, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Cai, T. Huang, L. Hu, X. Shi, L. Xie, and Y. Li, “Prediction of lysine ubiquitination with mRMR feature selection and analysis,” Amino Acids, pp. 1–9, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. L. Hu, W. Cui, Z. He et al., “Cooperativity among short amyloid stretches in long amyloidogenic sequences,” PLoS ONE, vol. 7, no. 6, Article ID e39369, 2012. View at Publisher · View at Google Scholar
  35. B. Q. Li, L. L. Hu, L. Chen, K. Y. Feng, Y. D. Cai, and K. C. Chou, “Prediction of protein domain with mRMR feature selection and analysis,” PLoS ONE, vol. 7, no. 6, Article ID e39308, 2012. View at Publisher · View at Google Scholar
  36. B.-Q. Li, T. Huang, L. Liu, Y.-D. Cai, and K.-C. Chou, “Identification of colorectal cancer related genes with mrmr and shortest path in protein-protein interaction network,” PLoS ONE, vol. 7, no. 4, Article ID e33393, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. J. A. Granek and P. M. Magwene, “Environmental and genetic determinants of colony morphology in yeast,” PLoS Genetics, vol. 6, no. 1, Article ID e1000823, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Elsztein, R. M. de Lucena, and M. A. de Morais Jr., “The resistance of the yeast Saccharomyces cerevisiae to the biocide polyhexamethylene biguanide: involvement of cell wall integrity pathway and emerging role for YAP1,” BMC Molecular Biology, vol. 12, article 38, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. C. D. M. Rodley, R. S. Grand, L. R. Gehlen, G. Greyling, M. B. Jones, and J. M. O'Sullivan, “Mitochondrial-nuclear DNA interactions contribute to the regulation of nuclear transcript levels as part of the inter-organelle communication system,” PLoS ONE, vol. 7, no. 1, Article ID e30943, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. R. K. Blackman, K. Cheung-Ong, M. Gebbia et al., “Mitochondrial electron transport is the cellular target of the oncology drug Elesclomol,” PLoS ONE, vol. 7, no. 1, Article ID e29798, 2012. View at Publisher · View at Google Scholar · View at Scopus
  41. H. Reyes-Caballero, G. C. Campanello, and D. P. Giedroc, “Metalloregulatory proteins: metal selectivity and allosteric switching,” Biophysical Chemistry, vol. 156, no. 2-3, pp. 103–114, 2011. View at Publisher · View at Google Scholar · View at Scopus