About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 871689, 11 pages
http://dx.doi.org/10.1155/2013/871689
Clinical Study

Role of Color Doppler Imaging in Early Diagnosis and Prediction of Progression in Glaucoma

1Radiology Department, Ciudad Real General University Hospital, 13005 Ciudad Real, Spain
2Ophthalmology Department, Miguel Servet University Hospital, 50009 Zaragoza, Spain
3Radiology Department, Miguel Servet University Hospital, 50009 Zaragoza, Spain

Received 22 April 2013; Revised 11 July 2013; Accepted 9 August 2013

Academic Editor: Paolo Fogagnolo

Copyright © 2013 Fatima Jimenez-Aragon et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. G. Bedi, D. S. Gombos, C. S. Ng, and S. Singh, “Sonography of the eye,” American Journal of Roentgenology, vol. 187, no. 4, pp. 1061–1072, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. L. M. Scoutt, M. L. Zawin, and K. J. Taylor, “Doppler US. Part I. Basic principles, instrumentation, and pitfalls,” Radiology, vol. 174, no. 2, pp. 297–307, 1990. View at Scopus
  3. L. Bonomi, G. Marchini, M. Marraffa, P. Bernardi, R. Morbio, and A. Varotto, “Vascular risk factors for primary open angle glaucoma: The Egna-Neumarkt Study,” Ophthalmology, vol. 107, no. 7, pp. 1287–1293, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Flammer, S. Orgül, V. P. Costa et al., “The impact of ocular blood flow in glaucoma,” Progress in Retinal and Eye Research, vol. 21, no. 4, pp. 359–393, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. R. D. Fechtner and R. N. Weinreb, “Mechanisms of optic nerve damage in primary open angle glaucoma,” Survey of Ophthalmology, vol. 39, no. 1, pp. 23–42, 1994. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Resnikoff, D. Pascolini, D. Etya'ale et al., “Global data on visual impairment in the year 2002,” Bulletin of the World Health Organization, vol. 82, no. 11, pp. 844–851, 2004. View at Scopus
  7. H. A. Quigley and A. T. Broman, “The number of people with glaucoma worldwide in 2010 and 2020,” British Journal of Ophthalmology, vol. 90, no. 3, pp. 262–267, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Tuulonen, J. Lehtola, and P. J. Airaksinen, “Nerve fiber layer defects with normal visual fields: do normal optic disc and normal visual field indicate absence of glaucomatous abnormality?” Ophthalmology, vol. 100, no. 5, pp. 587–598, 1993. View at Scopus
  9. T. G. Zeyen and J. Caprioli, “Progression of disc and field damage in early glaucoma,” Archives of Ophthalmology, vol. 111, no. 1, pp. 62–65, 1993. View at Scopus
  10. S. S. Hayreh, I. H. Revie, and J. Edwards, “Vasogenic origin of visual field defects and optic nerve changes in glaucoma,” British Journal of Ophthalmology, vol. 54, no. 7, pp. 461–472, 1970. View at Scopus
  11. K. Yaoeda, M. Shirakashi, A. Fukushima et al., “Relationship between optic nerve head microcirculation and visual field loss in glaucoma,” Acta Ophthalmologica Scandinavica, vol. 81, no. 3, pp. 253–259, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Plange, M. Kaup, A. Weber, A. Harris, K. O. Arend, and A. Remky, “Performance of colour Doppler imaging discriminating normal tension glaucoma from healthy eyes,” Eye, vol. 23, no. 1, pp. 164–170, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. N. Akcar, N. Yildirim, B. Adapinar, T. Kaya, and I. R. Ozkan, “Duplex sonography of retro-orbital and carotid arteries in patients with normal-tension glaucoma,” Journal of Clinical Ultrasound, vol. 33, no. 6, pp. 270–276, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Harris, H. S. Chung, T. A. Ciulla, and L. Kagemann, “Progress in measurement of ocular blood flow and relevance to our understanding of glaucoma and age-related macular degeneration,” Progress in Retinal and Eye Research, vol. 18, no. 5, pp. 669–687, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Plange, M. Kaup, O. Arend, and A. Remky, “Asymmetric visual field loss and retrobulbar haemodynamics in primary open-angle glaucoma,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 244, no. 8, pp. 978–983, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Galassi, A. Sodi, F. Ucci, G. Renieri, B. Pieri, and M. Baccini, “Ocular hemodynamics and glaucoma prognosis: A Color Doppler Imaging Study,” Archives of Ophthalmology, vol. 121, no. 12, pp. 1711–1715, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Martinez and M. Sanchez, “Ocular haemodynamics in pseudoexfoliative and primary open-angle glaucoma,” Eye, vol. 22, no. 4, pp. 515–520, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Calvo, A. Ferreras, V. Polo, et al., “Predictive value of retrobulbar blood flow parameters in glaucoma suspects,” Investigative Ophthalmology & Visual Science, vol. 53, no. 7, pp. 3875–3884, 2012.
  19. O. Zeitz, P. Galambos, L. Wagenfeld et al., “Glaucoma progression is associated with decreased blood flow velocities in the short posterior ciliary artery,” British Journal of Ophthalmology, vol. 90, no. 10, pp. 1245–1248, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Martínez and M. Sánchez, “Predictive value of colour Doppler imaging in a prospective study of visual field progression in primary open-angle glaucoma,” Acta Ophthalmologica Scandinavica, vol. 83, no. 6, pp. 716–722, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Hodapp, R. K. Parrish, and D. R. Anderson, Clinical Decisions in Glaucoma, The CV Mosby, St Louis, Mo, USA, 1993.
  22. G. Wollstein, D. F. Garway-Heath, and R. A. Hitchings, “Identification of early glaucoma cases with the scanning laser ophthalmoscope,” Ophthalmology, vol. 105, no. 8, pp. 1557–1563, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Ferreras, A. B. Pajarín, V. Polo, J. M. Larrosa, L. E. Pablo, and F. M. Honrubia, “Diagnostic ability of heidelberg retina tomograph 3 classifications: glaucoma probability score versus moorfields regression analysis,” Ophthalmology, vol. 114, no. 11, pp. 1981.e1–1987.e1, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. E. J. Boote, “Doppler US techniques: concepts of blood flow detection and flow dynamics,” Radiographics, vol. 23, no. 5, pp. 1315–1327, 2003. View at Scopus
  25. T. H. Williamson and A. Harris, “Ocular blood flow measurement,” British Journal of Ophthalmology, vol. 78, no. 12, pp. 939–945, 1994. View at Scopus
  26. D. S. Kamal, D. F. Garway-Heath, R. A. Hitchings, and F. W. Fitzke, “Use of sequential Heidelberg retina tomograph images to identify changes at the optic disc in ocular hypertensive patients at risk of developing glaucoma,” British Journal of Ophthalmology, vol. 84, no. 9, pp. 993–998, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. L. M. Zangwill, R. N. Weinreb, J. A. Beiser et al., “Baseline topographic optic disc measurements are associated with the development of primary open-angle glaucoma: the Confocal Scanning Laser Ophthalmoscopy Ancillary Study to the Ocular Hypertension Treatment Study,” Archives of Ophthalmology, vol. 123, no. 9, pp. 1188–1197, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Miglior, M. Guareschi, E. Albe', S. Gomarasca, M. Vavassori, and N. Orzalesi, “Detection of glaucomatous visual field changes using the Moorfields regression analysis of the Heidelberg retina tomograph,” American Journal of Ophthalmology, vol. 136, no. 1, pp. 26–33, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Heijl, M. C. Leske, B. Bengtsson, L. Hyman, B. Bengtsson, and M. Hussein, “Reduction of intraocular pressure and glaucoma progression: results from the early manifest glaucoma trial,” Archives of Ophthalmology, vol. 120, no. 10, pp. 1268–1279, 2002. View at Scopus
  30. M. C. Leske, A. Heijl, L. Hyman, B. Bengtsson, L. Dong, and Z. Yang, “Predictors of long-term progression in the early manifest glaucoma trial,” Ophthalmology, vol. 114, no. 11, pp. 1965–1972, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. R. S. Harwerth, L. Carter-Dawson, F. Shen, E. L. Smith III, and M. L. J. Crawford, “Ganglion cell losses underlying visual field defects from experimental glaucoma,” Investigative Ophthalmology and Visual Science, vol. 40, no. 10, pp. 2242–2250, 1999. View at Scopus
  32. B. C. Chauhan, T. A. McCormick, M. T. Nicolela, and R. P. LeBlanc, “Optic disc and visual field changes in a prospective longitudinal study of patients with glaucoma: comparison of scanning laser tomography with conventional perimetry and optic disc photography,” Archives of Ophthalmology, vol. 119, no. 10, pp. 1492–1499, 2001. View at Scopus
  33. C. A. Johnson, P. A. Sample, L. M. Zangwill et al., “Structure and function evaluation (SAFE): II. Comparison of optic disk and visual field characteristics,” American Journal of Ophthalmology, vol. 135, no. 2, pp. 148–154, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. F. A. Medeiros, L. M. Zangwill, C. Bowd, and R. N. Weinreb, “Comparison of the GDx VCC scanning laser polarimeter, HRT II confocal scanning laser ophthalmoscope, and stratus OCT optical coherence tomograph for the detection of glaucoma,” Archives of Ophthalmology, vol. 122, no. 6, pp. 827–837, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Ferreras, L. E. Pablo, D. F. Garway-Heath, P. Fogagnolo, and J. García-Feijoo, “Mapping standard automated perimetry to the peripapillary retinal nerve fiber layer in glaucoma,” Investigative Ophthalmology and Visual Science, vol. 49, no. 7, pp. 3018–3025, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. S. J. A. Rankin, B. E. Walman, A. R. Buckley, and S. M. Drance, “Color Doppler imaging and spectral analysis of the optic nerve vasculature in glaucoma,” American Journal of Ophthalmology, vol. 119, no. 6, pp. 685–693, 1995. View at Scopus
  37. M. T. Nicolela, S. M. Drance, S. J. A. Rankin, A. R. Buckley, and B. E. Walman, “Color Doppler imaging in patients with asymmetric glaucoma and unilateral visual field loss,” American Journal of Ophthalmology, vol. 121, no. 5, pp. 502–510, 1996. View at Scopus
  38. H. J. Kaiser, A. Schoetzau, D. Stümpfig, and J. Flammer, “Blood-flow velocities of the extraocular vessels in patients with high-tension and normal-tension primary open-angle glaucoma,” American Journal of Ophthalmology, vol. 123, no. 3, pp. 320–327, 1997. View at Scopus
  39. H. Birinci, M. Danaci, I. Oge, and N. D. Erkan, “Ocular blood flow in healthy and primary open-angle glaucomatous eyes,” Ophthalmologica, vol. 216, no. 6, pp. 434–437, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Neméth, R. Kovács, Z. Harkányi, K. Knézy, K. Sényi, and I. Marsovszky, “Observer experience improves reproducibility of color Doppler sonography of orbital blood vessels,” Journal of Clinical Ultrasound, vol. 30, pp. 332–335, 2002.
  41. A. Harris, T. H. Williamson, B. Martin et al., “Test/retest reproducibility of color Doppler imaging assessment of blood flow velocity in orbital vessels,” Journal of Glaucoma, vol. 4, no. 4, pp. 281–286, 1995. View at Scopus
  42. G. K. Kouvidis, A. Benos, G. Kyriakopoulou, G. Anastopoulos, and D. Triantafyllou, “Colour Doppler ultrasonography of the ophthalmic artery: flow parameters in normal subjects,” International Angiology, vol. 19, no. 4, pp. 319–325, 2000. View at Scopus