About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 871936, 10 pages
http://dx.doi.org/10.1155/2013/871936
Review Article

MUC1-Specific Cytotoxic T Lymphocytes in Cancer Therapy: Induction and Challenge

1UMR892, INSERM, Institut de Recherche Thérapeutique, Université de Nantes, 8 quai Moncousu, BP70721, 44007 Nantes Cedex 1, France
2CNRS, UMR6299, Institut de Recherche Thérapeutique, Université de Nantes, 8 quai Moncousu, BP70721, 44007 Nantes Cedex 1, France
3Faculté de Médecine, Université de Nantes, 44035 Nantes Cedex 1, France

Received 18 May 2012; Accepted 6 July 2012

Academic Editor: Julie Curtsinger

Copyright © 2013 David Roulois et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. P. Dunn, L. J. Old, and R. D. Schreiber, “The three Es of cancer immunoediting,” Annual Review of Immunology, vol. 22, pp. 329–360, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Traversari, P. van der Bruggen, I. F. Luescher et al., “A nonapeptide encoded by human gene MAGE-1 is recognized on HLA-A1 by cytolytic T lymphocytes directed against tumor antigen MZ2-E,” Journal of Experimental Medicine, vol. 176, no. 5, pp. 1453–1457, 1992. View at Publisher · View at Google Scholar · View at Scopus
  3. J. H. Kessler and C. J. M. Melief, “Identification of T-cell epitopes for cancer immunotherapy,” Leukemia, vol. 21, no. 9, pp. 1859–1874, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Müller, K. Alving, J. Peter-Katalinic, N. Zachara, A. A. Gooley, and F. G. Hanisch, “High density O-glycosylation on tandem repeat peptide from secretory MUC1 of T47D breast cancer cells,” The Journal of Biological Chemistry, vol. 274, no. 26, pp. 18165–18172, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. D. W. Kufe, “Functional targeting of the MUC1 oncogen in human cancers,” Cancer Biology and Therapy, vol. 8, no. 13, pp. 1197–1203, 2009. View at Scopus
  6. D. Kufe, “Oncogenic function of the MUC1 receptor subunit in gene regulation,” Oncogene, vol. 29, no. 42, pp. 5663–5666, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. S. J. Gendler, C. A. Lancaster, J. Taylor-Papadimitriou et al., “Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin,” The Journal of Biological Chemistry, vol. 265, no. 25, pp. 15286–15293, 1990. View at Scopus
  8. M. S. Lan, S. K. Batra, W. N. Qi, R. S. Metzgar, and M. A. Hollingsworth, “Cloning and sequencing of a human pancreatic tumor mucin cDNA,” The Journal of Biological Chemistry, vol. 265, no. 25, pp. 15294–15299, 1990. View at Scopus
  9. J. Burchell, S. Gendler, J. Taylor-Papadimitriou et al., “Development and characterization of breast cancer reactive monoclonal antibodies directed to the core protein of the human milk mucin,” Cancer Research, vol. 47, no. 20, pp. 5476–5482, 1987. View at Scopus
  10. A. Girling, J. Bartkova, J. Burchell, S. Gendler, C. Gillett, and J. Taylor-Paradimitriou, “A core protein epitope of the polymorphic epithelial mucin detected by the monoclonal antibody SM-3 is selectively exposed in a range of primary carcinomas,” International Journal of Cancer, vol. 43, no. 6, pp. 1072–1076, 1989. View at Scopus
  11. H. Takeuchi, K. Kato, K. Denda-Nagai, F. G. Hanisch, H. Clausen, and T. Irimura, “The epitope recognized by the unique anti-MUC1 monoclonal antibody MY.1E12 involves sialylα2-3galactosylβ1-3N-acetylgalactosaminide linked to a distinct threonine residue in the MUC1 tandem repeat,” Journal of Immunological Methods, vol. 270, no. 2, pp. 199–209, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. K. O. Lloyd, J. Burchell, V. Kudryashov, B. W. T. Yin, and J. Taylor-Papadimitriou, “Comparison of O-linked carbohydrate chains in MUC-1 mucin from normal breast epithelial cell lines and breast carcinoma cell lines: demonstration of simpler and fewer glycan chains in tumor cells,” The Journal of Biological Chemistry, vol. 271, no. 52, pp. 33325–33334, 1996. View at Publisher · View at Google Scholar · View at Scopus
  13. G. F. Springer, “T and Tn, general carcinoma autoantigens,” Science, vol. 224, no. 4654, pp. 1198–1206, 1984. View at Scopus
  14. D. L. Barnd, M. S. Lan, R. S. Metzgar, and O. J. Finn, “Specific, major histocompatibility complex-unrestricted recognition of tumor-associated mucins by human cytotoxic T cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 18, pp. 7159–7163, 1989. View at Scopus
  15. C. G. Ioannides, B. Fisk, K. R. Jerome, T. Irimura, J. T. Wharton, and O. J. Finn, “Cytotoxic T cells from ovarian malignant tumors can recognize polymorphic epithelial mucin core peptides,” Journal of Immunology, vol. 151, no. 7, pp. 3693–3703, 1993. View at Scopus
  16. T. Takahashi, Y. Makiguchi, Y. Hinoda et al., “Expression of MUC1 on myeloma cells and induction of HLA-unrestricted CTL against MUC1 from a multiple myeloma patient,” Journal of Immunology, vol. 153, no. 5, pp. 2102–2109, 1994. View at Scopus
  17. H. Noto, T. Takahashi, Y. Makiguchi, T. Hayashi, Y. Hinoda, and K. Imai, “Cytotoxic T lymphocytes derived from bone marrow mononuclear cells of multiple myeloma patients recognize an underglycosylated form of MUC1 mucin,” International Immunology, vol. 9, no. 5, pp. 791–798, 1997. View at Publisher · View at Google Scholar · View at Scopus
  18. K. R. Jerome, D. L. Barnd, K. M. Bendt et al., “Cytotoxic T-lymphocytes derived from patients with breast adenocarcinoma recognize an epitope present on the protein core of a mucin molecule preferentially expressed by malignant cells,” Cancer Research, vol. 51, no. 11, pp. 2908–2916, 1991. View at Scopus
  19. Y. Hinoda, T. Takahashi, T. Hayashi et al., “Enhancement of reactivity of anti-MUC1 core protein antibody and killing activity of anti-MUC1 cytotoxic T cells by deglycosylation of target tissues or cells,” Journal of Gastroenterology, vol. 33, no. 2, pp. 164–171, 1998. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Domenech, R. A. Henderson, and O. J. Finn, “Identification of an HLA-A11-restricted epitope from the tandem repeat domain of the epithelial tumor antigen mucin,” Journal of Immunology, vol. 155, no. 10, pp. 4766–4774, 1995. View at Scopus
  21. V. Apostolopoulos, V. Karanikas, J. S. Haurum, and I. F. C. McKenzie, “Induction of HLA-A2-restricted CTLs to the mucin 1 human breast cancer antigen,” Journal of Immunology, vol. 159, no. 11, pp. 5211–5218, 1997. View at Scopus
  22. P. Brossart, K. S. Heinrich, G. Stuhler et al., “Identification of HLA-A2-restricted T-cell epitopes derived from the MUC1 tumor antigen for broadly applicable vaccine therapies,” Blood, vol. 93, no. 12, pp. 4309–4317, 1999. View at Scopus
  23. P. Brossart, A. Schneider, P. Dill et al., “The epithelial tumor antigen MUC1 is expressed in hematological malignancies and is recognized by MUC1-specific cytotoxic T-lymphocytes,” Cancer Research, vol. 61, no. 18, pp. 6846–6850, 2001. View at Scopus
  24. D. Roulois, V. Vignard, F. Gueugnon, et al., “Recognition of pleural mesothelioma by mucin-1(950–958)/human leukocyte antigen A*0201-specific CD8+ T-cells,” European Respiratory Journal, vol. 38, no. 5, pp. 1117–1126, 2011.
  25. T. Ninkovic, L. Kinarsky, K. Engelmann et al., “Identification of O-glycosylated decapeptides within the MUC1 repeat domain as potential MHC class I (A2) binding epitopes,” Molecular Immunology, vol. 47, no. 1, pp. 131–140, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. E. M. Hiltbold, P. Ciborowski, and O. J. Finn, “Naturally processed class II epitope from the tumor antigen MUC1 primes human CD4+ T cells,” Cancer Research, vol. 58, no. 22, pp. 5066–5070, 1998. View at Scopus
  27. E. M. Hiltbold, M. D. Alter, P. Ciborowski, and O. J. Finn, “Presentation of MUC1 tumor antigen by class I MHC and CTL function correlate with the glycosylation state of the protein taken up by dendritic cells,” Cellular Immunology, vol. 194, no. 2, pp. 143–149, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. A. M. Vlad, S. Muller, M. Cudic et al., “Complex carbohydrates are not removed during processing of glycoproteins by dendritic cells: processing of tumor antigen MUC1 glycopeptides for presentation to major histocompatibility complex class II-restricted T cells,” Journal of Experimental Medicine, vol. 196, no. 11, pp. 1435–1446, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Napoletano, A. Rughetti, M. P. Agervig Tarp et al., “Tumor-associated Tn-MUC1 glycoform is internalized through the macrophage galactose-type C-type lectin and delivered to the HLA class I and II compartments in dendritic cells,” Cancer Research, vol. 67, no. 17, pp. 8358–8367, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. E. M. Hiltbold, A. M. Vlad, P. Ciborowski, S. C. Watkins, and O. J. Finn, “The mechanism of unresponsiveness to circulating tumor antigen MUC1 is a block in intracellular sorting and processing by dendritic cells,” Journal of Immunology, vol. 165, no. 7, pp. 3730–3741, 2000. View at Scopus
  31. T. Ninkovic and F. G. Hanisch, “O-glycosylated human MUC1 repeats are processed in vitro by immunoproteasomes,” Journal of Immunology, vol. 179, no. 4, pp. 2380–2388, 2007. View at Scopus
  32. N. Peat, S. J. Gendler, E. N. Lalani, T. Duhig, and J. Taylor-Papadimitriou, “Tissue-specific expression of a human polymorphic epithelial mucin (MUC1) in transgenic mice,” Cancer Research, vol. 52, no. 7, pp. 1954–1960, 1992. View at Scopus
  33. M. M. Soares, V. Mehta, and O. J. Finn, “Three different vaccines based on the 140-amino acid MUC1 peptide with seven tandemly repeated tumor-specific epitopes elicit distinct immune effector mechanisms in wild-type versus MUC1-transgenic mice with different potential for tumor rejection,” Journal of Immunology, vol. 166, no. 11, pp. 6555–6563, 2001. View at Scopus
  34. K. G. Kohlgraf, A. J. Gawron, M. Higashi et al., “Tumor-specific immunity in MUC1.Tg mice induced by immunization with peptide vaccines from the cytoplasmic tail of CD227 (MUC1),” Cancer Immunology, Immunotherapy, vol. 53, no. 12, pp. 1068–1084, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. G. J. Rowse, R. M. Tempero, M. L. VanLith, M. A. Hollingsworth, and S. J. Gendler, “Tolerance and immunity to MUC1 in a human MUC1 transgenic murine model,” Cancer Research, vol. 58, no. 2, pp. 315–321, 1998. View at Scopus
  36. R. M. Tempero, G. J. Rowse, S. J. Gendler, and M. A. Hollingsworth, “Passively transferred anti-MUC1 antibodies cause neither autoimmune disorders nor immunity against transplanted tumors in MUC1 transgenic mice,” International Journal of Cancer, vol. 80, no. 4, pp. 595–599, 1999. View at Publisher · View at Google Scholar
  37. R. M. Tempero, M. L. VanLith, K. Morikane, G. J. Rowse, S. J. Gendler, and M. A. Hollingsworth, “CD4+ lymphocytes provide MUC1-specific tumor immunity in vivo that is undetectable in vitro and is absent in MUC1 transgenic mice,” Journal of Immunology, vol. 161, no. 10, pp. 5500–5506, 1998. View at Scopus
  38. R. A. Budiu, I. Diaconu, R. Chrissluis, A. Dricu, R. P. Edwards, and A. M. Vlad, “A conditional mouse model for human MUC1-positive endometriosis shows the presence of anti-MUC1 antibodies and Foxp3+ regulatory T cells,” Disease Models and Mechanisms, vol. 2, no. 11-12, pp. 593–603, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. S. O. Ryan, A. M. Vlad, K. Islam, J. Gariépy, and O. J. Finn, “Tumor-associated MUC1 glycopeptide epitopes are not subject to self-tolerance and improve responses to MUC1 peptide epitopes in MUC1 transgenic mice,” Biological Chemistry, vol. 390, no. 7, pp. 611–618, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. S. O. Ryan, M. S. Turner, J. Gariépy, and O. J. Finn, “Tumor antigen epitopes interpreted by the immune system as self or abnormal-self differentially affect cancer vaccine responses,” Cancer Research, vol. 70, no. 14, pp. 5788–5796, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. C. K. Tang, K. C. Sheng, D. Pouniotis et al., “Oxidized and reduced mannan mediated MUC1 DNA immunization induce effective anti-tumor responses,” Vaccine, vol. 26, no. 31, pp. 3827–3834, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. A. M. Farkas and O. J. Finn, “Vaccines based on abnormal self-antigens as tumor-associated antigens: immune regulation,” Seminars in Immunology, vol. 22, no. 3, pp. 125–131, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. T. Deguchi, M. Tanemura, E. Miyoshi et al., “Increased immunogenicity of tumor-associated antigen, mucin 1, engineered to express α-Gal epitopes: a novel approach to immunotherapy in pancreatic cancer,” Cancer Research, vol. 70, no. 13, pp. 5259–5269, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. R. Kovjazin, I. Volovitz, Y. Kundel et al., “ImMucin: a novel therapeutic vaccine with promiscuous MHC binding for the treatment of MUC1-expressing tumors,” Vaccine, vol. 29, no. 29-30, pp. 4676–4686, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. D. H. Choi, J. K. Woo, Y. Choi, H. S. Seo, and C. W. Kim, “A novel chimeric DNA vaccine: enhancement of preventive and therapeutic efficacy of DNA vaccine by fusion of Mucin 1 to a heat shock protein 70 gene,” Molecular Medicine Reports, vol. 4, no. 5, pp. 885–890, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Chen, H. Y. Li, D. Wang, J. J. Zhao, and X. Z. Guo, “Human dendritic cells transfected with amplified MUC1 mRNA stimulate cytotoxic T lymphocyte responses against pancreatic cancer in vitro,” Journal of Gastroenterology and Hepatology, vol. 26, no. 10, pp. 1509–1518, 2011. View at Publisher · View at Google Scholar
  47. S. E. Wright, I. S. Quinlin, K. A. Rewers-Felkins, K. E. Dombrowski, and C. A. Phillips, “Retention of immunogenicity produced by mucin1 peptides with glycosylation site substitutions,” Immunopharmacology and Immunotoxicology, vol. 32, no. 4, pp. 647–655, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Kobukai, G. J. Kremers, J. G. Cobb et al., “Induction of antitumor immunity by dendritic cells loaded with membrane-translocating mucin 1 peptide antigen,” Translational Oncology, vol. 4, no. 1, pp. 1–8, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. V. Lakshminarayanan, P. Thompson, M. A. Wolfert, et al., “Immune recognition of tumor-associated mucin MUC1 is achieved by a fully synthetic aberrantly glycosylated MUC1 tripartite vaccine,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 1, pp. 261–266, 2012. View at Publisher · View at Google Scholar
  50. D. Sugiura, S. Aida, K. Denda-nagai et al., “Differential effector mechanisms induced by vaccination with MUC1 DNA in the rejection of colon carcinoma growth at orthotopic sites and metastases,” Cancer Science, vol. 99, no. 12, pp. 2477–2484, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. Y. Choi, Y. H. Jeon, J. Y. Jang, J. K. Chung, and C. W. Kim, “Treatment with mANT2 shRNA enhances antitumor therapeutic effects induced by MUC1 DNA vaccination,” Molecular Therapy, vol. 19, no. 5, pp. 979–989, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. Y. H. Jeon, Y. Choi, H. J. Kim et al., “In vivo bioluminescence visualization of antitumor effects by human MUCI vaccination,” Molecular Imaging, vol. 6, no. 5, pp. 297–303, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. C. Trumpfheller, M. P. Longhi, M. Caskey, et al., “Dendritic cell-targeted protein vaccines: a novel approach to induce T-cell immunity,” Journal of Internal Medicine, vol. 271, no. 2, pp. 183–192, 2012. View at Publisher · View at Google Scholar
  54. Y. Rong, D. Jin, W. Wu et al., “Induction of protective and therapeutic anti-pancreatic cancer immunity using a reconstructed MUC1 DNA vaccine,” BMC Cancer, vol. 9, article 191, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. D. Massé, F. Ebstein, G. Bougras, J. Harb, K. Meflah, and M. Grégoire, “Increased expression of inducible HSP70 in apoptotic cells is correlated with their efficacy for antitumor vaccine therapy,” International Journal of Cancer, vol. 111, no. 4, pp. 575–583, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. J. Pinkhasov, M. L. Alvarez, M. M. Rigano et al., “Recombinant plant-expressed tumour-associated MUC1 peptide is immunogenic and capable of breaking tolerance in MUC1.Tg mice,” Plant Biotechnology Journal, vol. 9, no. 9, pp. 991–1001, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. V. Apostolopoulos, G. A. Pietersz, A. Tsibanis et al., “Pilot phase III immunotherapy study in early-stage breast cancer patients using oxidized mannan-MUC1 [ISRCTN71711835],” Breast Cancer Research, vol. 8, no. 3, article R27, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. R. Ramlau, E. Quoix, J. Rolski et al., “A phase II study of Tg4010 (Mva-Muc1-Il2) in association with chemotherapy in patients with stage III/IV non-small cell lung cancer,” Journal of Thoracic Oncology, vol. 3, no. 7, pp. 735–744, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. R. Dreicer, W. M. Stadler, F. R. Ahmann et al., “MVA-MUC1-IL2 vaccine immunotherapy (TG4010) improves PSA doubling time in patients with prostate cancer with biochemical failure,” Investigational New Drugs, vol. 27, no. 4, pp. 379–386, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Oudard, O. Rixe, B. Beuselinck et al., “A phase II study of the cancer vaccine TG4010 alone and in combination with cytokines in patients with metastatic renal clear-cell carcinoma: clinical and immunological findings,” Cancer Immunology, Immunotherapy, vol. 60, no. 2, pp. 261–271, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. E. Quoix, R. Ramlau, V. Westeel, et al., “Therapeutic vaccination with TG4010 and first-line chemotherapy in advanced non-small-cell lung cancer: a controlled phase 2B trial,” The Lancet Oncology, vol. 12, no. 12, pp. 1125–1133, 2011. View at Publisher · View at Google Scholar
  62. F. Ohyanagi, T. Horai, I. Sekine et al., “Safety of BLP25 liposome vaccine (L-BLP25) in Japanese patients with unresectable stage III nsclc after primary chemoradiotherapy: preliminary results from a phase I/II study,” Japanese Journal of Clinical Oncology, vol. 41, no. 5, Article ID hyr021, pp. 718–722, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. C. Butts, A. Maksymiuk, G. Goss et al., “Updated survival analysis in patients with stage IIIB or IV non-small-cell lung cancer receiving BLP25 liposome vaccine (L-BLP25): phase IIB randomized, multicenter, open-label trial,” Journal of Cancer Research and Clinical Oncology, vol. 137, no. 9, pp. 1337–1342, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. Y. L. Wu, K. Park, R. A. Soo, et al., “INSPIRE: a phase III study of the BLP25 liposome vaccine (L-BLP25) in Asian patients with unresectable stage III non-small cell lung cancer,” BMC Cancer, vol. 11, artcle 430, 2011. View at Publisher · View at Google Scholar
  65. C. Butts, R. N. Murray, C. Smith et al., “A multicenter open-label study to assess the safety of a new formulation of BLP25 liposome vaccine in patients with unresectable stage III non-small-cell lung cancer,” Clinical Lung Cancer, vol. 11, no. 6, pp. 391–395, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. S. E. Wright, K. A. Rewers-Felkins, I. S. Quinlin et al., “Tumor burden influences cytotoxic T cell development in metastatic breast cancer patients—a phase III study tumor burden influences CTL development,” Immunological Investigations, vol. 38, no. 8, pp. 820–838, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. A. J. Lepisto, A. J. Moser, H. Zeh, et al., “A phase I/II study of a MUC1 peptide pulsed autologous dendritic cell vaccine as adjuvant therapy in patients with resected pancreatic and biliary tumors,” Cancer Therapy, vol. 6, no. B, pp. 955–964, 2008.
  68. H. Kondo, S. Hazama, T. Kawaoka, et al., “Adoptive immunotherapy for pancreatic cancer using MUC1 peptide-pulsed dendritic cells and activated T lymphocytes,” Anticancer Research, vol. 28, no. 1B, pp. 379–387, 2008.
  69. M. J. Dobrzanski, K. A. Rewers-Felkins, K. A. Samad, et al., “Immunotherapy with IL-10- and IFN-gamma-producing CD4 effector cells modulate, “Natural” and, “Inducible” CD4 TReg cell subpopulation levels: observations in four cases of patients with ovarian cancer,” Cancer Immunology, Immunotherapy, vol. 61, no. 6, pp. 839–854, 2012.
  70. M. Mohebtash, K. Y. Tsang, R. A. Madan, et al., “A pilot study of MUC-1/CEA/TRICOM poxviral-based vaccine in patients with metastatic breast and ovarian cancer,” Clinical Cancer Research, vol. 17, no. 22, pp. 7164–7173, 2011. View at Publisher · View at Google Scholar
  71. N. K. Ibrahim, K. O. Yariz, I. Bondarenko, et al., “Randomized phase II trial of letrozole plus anti-MUC1 antibody AS1402 in hormone receptor-positive locally advanced or metastatic breast cancer,” Clinical Cancer Research, vol. 17, no. 21, pp. 6822–6830, 2011. View at Publisher · View at Google Scholar
  72. M. D. Pegram, V. F. Borges, N. Ibrahim et al., “Phase I dose escalation pharmacokinetic assessment of intravenous humanized anti-MUC1 antibody AS1402 in patients with advanced breast cancer,” Breast Cancer Research, vol. 11, no. 5, article R73, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. S. M. Rittig, M. Haentschel, K. J. Weimer et al., “Intradermal vaccinations with RNA coding for TAA generate CD8+ and CD4+ immune responses and induce clinical benefit in vaccinated patients,” Molecular Therapy, vol. 19, no. 5, pp. 990–999, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. S. Sharma, M. K. Srivastava, M. Harris-White, J. M. Lee, and S. Dubinett, “MUC1 peptide vaccine mediated antitumor activity in non-small cell lung cancer,” Expert Opinion on Biological Therapy, vol. 11, no. 8, pp. 987–990, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. R. Sangha and S. North, “L-BLP25: a MUC1-targeted peptide vaccine therapy in prostate cancer,” Expert Opinion on Biological Therapy, vol. 7, no. 11, pp. 1723–1730, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. M. Palmer, J. Parker, S. Modi, et al., “Phase I study of the BLP25 (MUC1 peptide) liposomal vaccine for active specific immunotherapy in stage IIIB/IV non-small-cell lung cancer,” Clinical Lung Cancer, vol. 3, no. 1, pp. 49–57, 2001. View at Publisher · View at Google Scholar
  77. T. Kawaoka, M. Takashima, K. Yamamoto, T. Ueno, and M. Oka, “Adoptive immunotherapy using MUC1—specific CTLs for unresectable pancreatic cancer,” Nippon Rinsho, vol. 64, supplement 1, pp. 279–282, 2006.
  78. A. J. Lepisto, A. J. Moser, H. Zeh, et al., “A phase I/II study of a MUC1 peptide pulsed autologous dendritic cell vaccine as adjuvant therapy in patients with resected pancreatic and biliary tumors,” Cancer Therapy, vol. 6, no. B, pp. 955–964, 2008.
  79. S. E. Wright, K. A. Rewers-Felkins, I. S. Quinlin, et al., “Tumor burden influences cytotoxic T cell development in metastatic breast cancer patients—a phase I/II study,” Immunological Investigations, vol. 38, no. 8, pp. 820–838, 2009.
  80. D. Raina, R. Ahmad, H. Rajabi, et al., “Targeting cysteine-mediated dimerization of the MUC1-C oncoprotein in human cancer cells,” International Journal of Oncology, vol. 40, no. 5, pp. 1643–1649, 2012. View at Publisher · View at Google Scholar
  81. D. Raina, M. Kosugi, R. Ahmad et al., “Dependence on the MUC1-C oncoprotein in non-small cell lung cancer cells,” Molecular Cancer Therapeutics, vol. 10, no. 5, pp. 806–816, 2011. View at Publisher · View at Google Scholar · View at Scopus
  82. M. J. Brayman, N. Dharmaraj, E. Lagow, and D. D. Carson, “MUC1 expression is repressed by protein inhibitor of activated signal transducer and activator of transcription-y,” Molecular Endocrinology, vol. 21, no. 11, pp. 2725–2737, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. D. Roulois, C. Blanquart, C. Panterne, et al., “Downregulation of MUC1 expression and its recognition by CD8+ T cells on the surface of malignant pleural mesothelioma cells treated with HDACi,” European Journal of Immunology, vol. 42, no. 3, pp. 783–789, 2012. View at Publisher · View at Google Scholar