About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 875958, 11 pages
http://dx.doi.org/10.1155/2013/875958
Research Article

Proteomic Identification of Dengue Virus Binding Proteins in Aedes aegypti Mosquitoes and Aedes albopictus Cells

1Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 07360 Mexico, DF, Mexico
2Coordinación Academica, Universidad Autónoma de la Ciudad de México, 06720 Mexico, DF, Mexico
3Department of Biochemestry, Faculty of Medicine, Universidad Nacional Autonoma de México, Edificio de Investigación, 04510 Mexico, DF, Mexico
4Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-0015, USA

Received 8 April 2013; Revised 19 September 2013; Accepted 25 September 2013

Academic Editor: Vittorio Sambri

Copyright © 2013 Maria de Lourdes Muñoz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Reiter, “Global-warming and vector-borne disease in temperate regions and at high altitude,” The Lancet, vol. 351, no. 9105, pp. 839–840, 1998. View at Scopus
  2. W. J. Tabachnick, “Challenges in predicting climate and environmental effects on vector-borne disease episystems in a changing world,” Journal of Experimental Biology, vol. 213, no. 6, pp. 946–954, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Rico-Hesse, “Molecular evolution and distribution of dengue viruses type 1 and 2 in nature,” Virology, vol. 174, no. 2, pp. 479–493, 1990. View at Publisher · View at Google Scholar · View at Scopus
  4. J. A. Lewis, G.-J. Chang, R. S. Lanciotti, R. M. Kinney, L. W. Mayer, and D. W. Trent, “Phylogenetic relationships of Dengue-2 viruses,” Virology, vol. 197, no. 1, pp. 216–224, 1993. View at Publisher · View at Google Scholar · View at Scopus
  5. R. S. Lanciotti, J. G. Lewis, D. J. Gubler, and D. W. Trent, “Molecular evolution and epidemiology of dengue-3 viruses,” Journal of General Virology, vol. 75, no. 1, pp. 65–75, 1994. View at Scopus
  6. S. S. Twiddy, J. J. Farrar, N. V. Chau et al., “Phylogenetic relationships and differential selection pressures among genotypes of dengue-2 virus,” Virology, vol. 298, no. 1, pp. 63–72, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. M. G. Guzman, S. B. Halstead, H. Artsob et al., “Dengue: a continuing global threat,” Nature Reviews, vol. 8, 12, pp. S7–S16, 2010. View at Scopus
  8. M. de Lourdes Muñoz, A. Cisneros, J. Cruz, P. Das, R. Tovar, and A. Ortega, “Putative dengue virus receptors from mosquito cells,” FEMS Microbiology Letters, vol. 168, no. 2, pp. 251–258, 1998. View at Publisher · View at Google Scholar · View at Scopus
  9. R. F. Mercado-Curiel, W. C. Black IV, and M. D. L. Mũoz, “A dengue receptor as possible genetic marker of vector competence in Aedes aegypti,” BMC Microbiology, vol. 8, article 118, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. S. W. Gollins and J. S. Porterfield, “Flavivirus infection enhancement in macrophages: an electron microscopic study of viral cellular entry,” Journal of General Virology, vol. 66, no. 9, pp. 1969–1982, 1985. View at Scopus
  11. J. J. H. Chu and M. L. Ng, “Infectious entry of West Nile virus occurs through a clathrin-mediated endocytic pathway,” Journal of Virology, vol. 78, no. 19, pp. 10543–10555, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Mosso, I. J. Galván-Mendoza, J. E. Ludert, and R. M. del Angel, “Endocytic pathway followed by dengue virus to infect the mosquito cell line C6/36 HT,” Virology, vol. 378, no. 1, pp. 193–199, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. H. M. Van der Schaar, M. J. Rust, C. Chen et al., “Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells,” PLoS Pathogens, vol. 4, no. 12, Article ID e1000244, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Bielefeldt-Ohmann, “Analysis of antibody-independent binding of dengue viruses and dengue virus envelope protein to human myelomonocytic cells and B lymphocytes,” Virus Research, vol. 57, no. 1, pp. 63–79, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Ramos-Castañeda, J. L. Imbert, B. L. Barrón, and C. Ramos, “A 65-kDa trypsin-sensible membrane cell protein as a possible receptor for dengue virus in cultured neuroblastoma cells,” Journal of NeuroVirology, vol. 3, no. 6, pp. 435–440, 1997. View at Scopus
  16. P. Hilgard and R. Stockert, “Heparan sulfate proteoglycans initiate dengue virus infection of hepatocytes,” Hepatology, vol. 32, no. 5, pp. 1069–1077, 2000. View at Scopus
  17. H. Ni, K. D. Ryman, H. Wang et al., “Interaction of yellow fever virus french neurotropic vaccine strain with monkey brain: characterization of monkey brain membrane receptor escape variants,” Journal of Virology, vol. 74, no. 6, pp. 2903–2906, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. M. M. B. Moreno-Altamirano, F. J. Sánchez-García, and M. L. Muñoz, “Non Fc receptor-mediated infection of human macrophages by dengue virus serotype 2,” Journal of General Virology, vol. 83, no. 5, pp. 1123–1130, 2002. View at Scopus
  19. B. Tassaneetrithep, T. H. Burgess, A. Granelli-Piperno et al., “DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells,” Journal of Experimental Medicine, vol. 197, no. 7, pp. 823–829, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Y. Mendoza, J. S. Salas-Benito, H. Lanz-Mendoza, S. Hernández-Martinez, and R. M. Del Angel, “A putative receptor for dengue virus in mosquito tissues: localization of a 45-KDA glycoprotein,” The American Journal of Tropical Medicine and Hygiene, vol. 67, no. 1, pp. 76–84, 2002. View at Scopus
  21. H.-Y. Chee and S. AbuBakar, “Identification of a 48 kDa tubulin or tubulin-like C6/36 mosquito cells protein that binds dengue virus 2 using mass spectrometry,” Biochemical and Biophysical Research Communications, vol. 320, no. 1, pp. 11–17, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. B. K. Thaisomboonsuk, E. T. Clayson, S. Pantuwatana, D. W. Vaughn, and T. P. Endy, “Characterization of dengue-2 virus binding to surfaces of mammalian and insect cells,” The American Journal of Tropical Medicine and Hygiene, vol. 72, no. 4, pp. 375–383, 2005. View at Scopus
  23. R. F. Mercado-Curiel, H. A. Esquinca-Avilés, R. Tovar, Á. Díaz-Badillo, M. Camacho-Nuez, and M. D. L. Muñoz, “The four serotypes of dengue recognize the same putative receptors in Aedes aegypti midgut and Ae. albopictus cells,” BMC Microbiology, vol. 6, article 85, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Sakoonwatanyoo, V. Boonsanay, and D. R. Smith, “Growth and production of the dengue virus in C6/36 cells and identification of a laminin-binding protein as a candidate serotype 3 and 4 receptor protein,” Intervirology, vol. 49, no. 3, pp. 161–172, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. J.-J. Hung, M.-T. Hsieh, M.-J. Young, C.-L. Kao, C.-C. King, and W. Chang, “An external loop region of domain III of dengue virus type 2 envelope protein is involved in serotype-specific binding to mosquito but not mammalian cells,” Journal of Virology, vol. 78, no. 1, pp. 378–388, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. F. A. Rey, F. X. Heinz, C. Mandl, C. Kunz, and S. C. Harrison, “The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution,” Nature, vol. 375, no. 6529, pp. 291–298, 1995. View at Scopus
  27. Y. Modis, S. Ogata, D. Clements, and S. C. Harrison, “A ligand-binding pocket in the dengue virus envelope glycoprotein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 12, pp. 6986–6991, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Modis, S. Ogata, D. Clements, and S. C. Harrison, “Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein,” Journal of Virology, vol. 79, no. 2, pp. 1223–1231, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Chen, T. Maguire, and R. M. Marks, “Demonstration of binding of dengue virus envelope protein to target cells,” Journal of Virology, vol. 70, no. 12, pp. 8765–8772, 1996. View at Scopus
  30. W. D. Crill and J. T. Roehrig, “Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to vero cells,” Journal of Virology, vol. 75, no. 16, pp. 7769–7773, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. J. J. H. Chu, R. Rajamanonmani, J. Li, R. Bhuvananakantham, J. Lescar, and M.-L. Ng, “Inhibition of West Nile virus entry by using a recombinant domain III from the envelope glycoprotein,” Journal of General Virology, vol. 86, no. 2, pp. 405–412, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. G. D. Gromowski and A. D. T. Barrett, “Characterization of an antigenic site that contains a dominant, type-specific neutralization determinant on the envelope protein domain III (ED3) of dengue 2 virus,” Virology, vol. 366, no. 2, pp. 349–360, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. J. F. L. Chin, J. J. H. Chu, and M. L. Ng, “The envelope glycoprotein domain III of dengue virus serotypes 1 and 2 inhibit virus entry,” Microbes and Infection, vol. 9, no. 1, pp. 1–6, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. K.-C. Huang, M.-C. Lee, C.-W. Wu, K.-J. Huang, H.-Y. Lei, and J.-W. Cheng, “Solution structure and neutralizing antibody binding studies of domain III of the dengue-2 virus envelope protein,” Proteins, vol. 70, no. 3, pp. 1116–1119, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Abd-Jamil, C.-Y. Cheah, and S. AbuBakar, “Dengue virus type 2 envelope protein displayed as recombinant phage attachment protein reveals potential cell binding sites,” Protein Engineering, Design and Selection, vol. 21, no. 10, pp. 605–611, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. V. Huerta, G. Chinea, N. Fleitas et al., “Characterization of the interaction of domain III of the envelope protein of dengue virus with putative receptors from CHO cells,” Virus Research, vol. 137, no. 2, pp. 225–234, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. S. M. Erb, S. Butrapet, K. J. Moss et al., “Domain-III FG loop of the dengue virus type 2 envelope protein is important for infection of mammalian cells and Aedes aegypti mosquitoes,” Virology, vol. 406, no. 2, pp. 328–335, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. W. C. Black IV, K. E. Bennett, N. Gorrochótegui-Escalante et al., “Flavivirus susceptibility in Aedes aegypti,” Archives of Medical Research, vol. 33, no. 4, pp. 379–388, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. C. Gomez-Machorro, K. E. Bennett, M. D. L. Munoz, and W. C. Black IV, “Quantitative trait loci affecting dengue midgut infection barriers in an advanced intercross line of Aedes aegypti,” Insect Molecular Biology, vol. 13, no. 6, pp. 637–648, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Butrapet, T. Childers, K. J. Moss et al., “Amino acid changes within the E protein hinge region that affect dengue virus type 2 infectivity and fusion,” Virology, vol. 413, no. 1, pp. 118–127, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Delenda, I. Staropoli, M.-P. Frenkiel, L. Cabanie, and V. Deubel, “Analysis of C-terminally truncated dengue 2 and dengue 3 virus envelope glycoproteins: processing in insect cells and immunogenic properties in mice,” Journal of General Virology, vol. 75, no. 7, pp. 1569–1578, 1994. View at Scopus
  42. M. Simmons, W. M. Nelson, S. J. L. Wu, and C. G. Hayes, “Evaluation of the protective efficacy of a recombinant dengue envelope B domain fusion protein against dengue 2 virus infection in mice,” The American Journal of Tropical Medicine and Hygiene, vol. 58, no. 5, pp. 655–662, 1998. View at Scopus
  43. R. Ocazionez Jimenez and B. A. Lopes da Fonseca, “Recombinant plasmid expressing a truncated dengue-2 virus E protein without co-expression of prM protein induces partial protection in mice,” Vaccine, vol. 19, no. 6, pp. 648–654, 2000. View at Publisher · View at Google Scholar · View at Scopus
  44. M.-W. Chiu and Y.-L. Yang, “Blocking the dengue virus 2 infections on BHK-21 cells with purified recombinant dengue virus 2 E protein expressed in Escherichia coli,” Biochemical and Biophysical Research Communications, vol. 309, no. 3, pp. 672–678, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. G. Batra, R. Raut, S. Dahiya, N. Kamran, S. Swaminathan, and N. Khanna, “Pichia pastoris-expressed dengue virus type 2 envelope domain III elicits virus-neutralizing antibodies,” Journal of Virological Methods, vol. 167, no. 1, pp. 10–16, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. L.-C. Chen, T.-M. Yeh, Y.-Y. Lin et al., “The envelope glycoprotein domain III of dengue virus type 2 induced the expression of anticoagulant molecules in endothelial cells,” Molecular and Cellular Biochemistry, vol. 342, no. 1-2, pp. 215–221, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. G. W. Smith and P. J. Wright, “Synthesis of proteins and glycoproteins in Dengue type 2 virus-infected Vero and Aedes albopictus cells,” Journal of General Virology, vol. 66, no. 3, pp. 559–571, 1985. View at Scopus
  48. R. Putnak, D. A. Barvir, J. M. Burrous et al., “Development of a purified, inactivated, dengue-2 virus vaccine prototype in Vero cells: immunogenicity and protection in mice and rhesus monkeys,” Journal of Infectious Diseases, vol. 174, no. 6, pp. 1176–1184, 1996. View at Scopus
  49. A. K. Srivastava, Y. Aira, C. Mori, Y. Kobayashi, and A. Igarashi, “Antigenicity of Japanese encephalitis virus envelope glycoprotein V 3 (E) and its cyanogen bromide cleaved fragments examined by monoclonal antibodies and Western blotting,” Archives of Virology, vol. 96, no. 1-2, pp. 97–107, 1987. View at Publisher · View at Google Scholar · View at Scopus
  50. M. S. Ramasamy, M. Sands, B. H. Kay, I. D. Fanning, G. W. Lawrence, and R. Ramasamy, “Anti-mosquito antibodies reduce the susceptibility of Aedes aegypti to arbovirus infection,” Medical and Veterinary Entomology, vol. 4, no. 1, pp. 49–55, 1990. View at Scopus
  51. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Scopus
  52. U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, vol. 227, no. 5259, pp. 680–685, 1970. View at Publisher · View at Google Scholar · View at Scopus
  53. H. Towbin, T. Staehelin, and J. Gordon, “Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications,” Proceedings of the National Academy of Sciences of the United States of America, vol. 76, no. 9, pp. 4350–4354, 1979. View at Scopus
  54. J. G. Timmins, E. A. Petrovskis, C. C. Marchioli, and L. E. Post, “A method for efficient gene isolation from phage λgt11 libraries: use of antisera to denatured, acetone-precipitated proteins,” Gene, vol. 39, no. 1, pp. 89–93, 1985. View at Scopus
  55. C. R. Merril, D. Goldman, and M. L. Van Keuren, “Gel protein stains: silver stain,” Methods in Enzymology, vol. 104, pp. 441–447, 1983. View at Scopus
  56. http://www.matrixscience.com.
  57. https://www.vectorbase.org/navigation/data.
  58. C. F. Bosio, B. J. Beaty, and W. C. Black IV, “Quantitative genetics of vector competence for dengue-2 virus in Aedes aegypti,” The American Journal of Tropical Medicine and Hygiene, vol. 59, no. 6, pp. 965–970, 1998. View at Scopus
  59. D. J. Gubler, S. Nalim, R. Tan, H. Saipan, and J. Sulianti Saroso, “Variation in susceptibility to oral infection with dengue viruses among geographic strains of Aedes aegypti,” The American Journal of Tropical Medicine and Hygiene, vol. 28, no. 6, pp. 1045–1052, 1979. View at Scopus
  60. K. E. Bennett, K. E. Olson, M. D. L. Muñoz et al., “Variation in vector competence for dengue 2 virus among 24 collections of Aedes aegypti from Mexico and the United States,” The American Journal of Tropical Medicine and Hygiene, vol. 67, no. 1, pp. 85–92, 2002. View at Scopus
  61. D. L. Oliveira, C. G. Freire-de-Lima, J. D. Nosanchuk, A. Casadevall, M. L. Rodrigues, and L. Nimrichter, “Extracellular vesicles from Cryptococcus neoformans modulate macrophage functions,” Infection and Immunity, vol. 78, no. 4, pp. 1601–1609, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. D. L. Oliveira, E. S. Nakayasu, L. S. Joffe et al., “Characterization of yeast extracellular vesicles: evidence for the participation of different pathways of cellular traffic in vesicle biogenesis,” PLoS ONE, vol. 5, no. 6, Article ID e11113, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. R. K. Swenerton, S. Zhang, M. Sajid et al., “The oligopeptidase B of Leishmania regulates parasite enolase and immune evasion,” Journal of Biological Chemistry, vol. 286, no. 1, pp. 429–440, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. J. T. Bechtel, R. C. Winant, and D. Ganem, “Host and viral proteins in the virion of kaposi's sarcoma-associated herpesvirus,” Journal of Virology, vol. 79, no. 8, pp. 4952–4964, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. E. Chertova, O. Chertov, L. V. Coren et al., “Proteomic and biochemical analysis of purified human immunodeficiency virus type 1 produced from infected monocyte-derived macrophages,” Journal of Virology, vol. 80, no. 18, pp. 9039–9052, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. M. L. Shaw, K. L. Stone, C. M. Colangelo, E. E. Gulcicek, and P. Palese, “Cellular proteins in influenza virus particles,” PLoS Pathogens, vol. 4, no. 6, Article ID e1000085, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. T. Ogino, T. Yamadera, T. Nonaka, S. Imajoh-Ohmi, and K. Mizumoto, “Enolase, a cellular glycolytic enzyme, is required for efficient transcription of Sendai virus genome,” Biochemical and Biophysical Research Communications, vol. 285, no. 2, pp. 447–455, 2001. View at Publisher · View at Google Scholar · View at Scopus
  68. A. Popova-Butler and D. H. Dean, “Proteomic analysis of the mosquito Aedes aegypti midgut brush border membrane vesicles,” Journal of Insect Physiology, vol. 55, no. 3, pp. 264–272, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. T. M. Colpitts, J. Cox, A. Nguyen, F. Feitosa, M. N. Krishnan, and E. Fikrig, “Use of a tandem affinity purification assay to detect interactions between West Nile and dengue viral proteins and proteins of the mosquito vector,” Virology, vol. 417, no. 1, pp. 179–187, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. E. V. Gurevich, J. J. G. Tesmer, A. Mushegian, and V. V. Gurevich, “G protein-coupled receptor kinases: more than just kinases and not only for GPCRs,” Pharmacology and Therapeutics, vol. 133, no. 1, pp. 40–69, 2012. View at Publisher · View at Google Scholar · View at Scopus
  71. S. V. Naga Prasad, S. A. Laporte, D. Chamberlain, M. G. Caron, L. Barak, and H. A. Rockman, “Phosphoinositide 3-kinase regulates β2-adrenergic receptor endocytosis by AP-2 recruitment to the receptor/β-arrestin complex,” Journal of Cell Biology, vol. 158, no. 3, pp. 563–575, 2002. View at Publisher · View at Google Scholar · View at Scopus