About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 876316, 17 pages
http://dx.doi.org/10.1155/2013/876316
Research Article

The Adaptive Nature of the Bone-Periodontal Ligament-Cementum Complex in a Ligature-Induced Periodontitis Rat Model

1Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, CA 94143, USA
2Division of Periodontology, Department of Orofacial Sciences, University of California, San Francisco, CA, USA

Received 4 January 2013; Revised 18 March 2013; Accepted 24 March 2013

Academic Editor: Brian L. Foster

Copyright © 2013 Ji-Hyun Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Shimono, T. Ishikawa, H. Ishikawa et al., “Regulatory mechanisms of periodontal regeneration,” Microscopy Research and Technique, vol. 60, no. 5, pp. 491–502, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. C. A. G. McCulloch, P. Lekic, and M. D. McKee, “Role of physical forces in regulating the form and function of the periodontal ligament,” Periodontology 2000, vol. 24, no. 1, pp. 56–72, 2000. View at Scopus
  3. W. Beertsen, C. A. G. Mcculloch, and J. Sodek, “The periodontal ligament: a unique, multifunctional connective tissue,” Periodontology 2000, vol. 14, no. 1, pp. 20–40, 1997. View at Scopus
  4. P. Lekic and C. A. McCulloch, “Periodontal ligament cell population: the central role of fibroblasts in creating a unique tissue,” The Anatomical Record, vol. 245, no. 2, pp. 327–341, 1996.
  5. J. M. Hurng, M. P. Kurylo, G. W. Marshall, S. M. Webb, M. I. Ryder, and S. P. Ho, “Discontinuities in the human bone-PDL-cementum complex,” Biomaterials, vol. 32, no. 29, pp. 7106–7117, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. S. S. Socransky and A. D. Haffajee, “The nature of periodontal diseases,” Annals of periodontology, vol. 2, no. 1, pp. 3–10, 1997. View at Scopus
  7. K. S. Kornman, “Mapping the pathogenesis of periodontitis: a new look,” Journal of Periodontology, vol. 79, no. 8, supplement, pp. 1560–1568, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Offenbacher, “Periodontal diseases: pathogenesis,” Annals of periodontology, vol. 1, no. 1, pp. 821–878, 1996. View at Scopus
  9. H. V. Jordan, “Rodent model systems in periodontal disease research,” Journal of Dental Research, vol. 50, no. 2, pp. 236–242, 1971. View at Scopus
  10. D. T. Graves, D. Fine, Y. T. A. Teng, T. E. Van Dyke, and G. Hajishengallis, “The use of rodent models to investigate host-bacteria interactions related to periodontal diseases,” Journal of Clinical Periodontology, vol. 35, no. 2, pp. 89–105, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Loe, E. Theilade, and S. B. Jensen, “Experimental gingivitis in man,” The Journal of Periodontology, vol. 36, pp. 177–187, 1965.
  12. P. Axelsson and J. Lindhe, “Effect of controlled oral hygiene procedures on caries and periodontal disease in adults,” Journal of Clinical Periodontology, vol. 5, no. 2, pp. 133–151, 1978. View at Scopus
  13. P. Axelsson and J. Lindhe, “Effect of controlled oral hygiene procedures on caries and periodontal disease in adults. Results after 6 years,” Journal of Clinical Periodontology, vol. 8, no. 3, pp. 239–248, 1981. View at Scopus
  14. R. C. Page and H. E. Schroeder, “Pathogenesis of inflammatory periodontal disease: a summary of current work,” Laboratory Investigation, vol. 34, no. 3, pp. 235–249, 1976. View at Scopus
  15. J. Lindhe, S. E. Hamp, and H. Loe, “Plaque induced periodontal disease in beagle dogs. A 4 year clinical, roentgenographical and histometrical study,” Journal of Periodontal Research, vol. 10, no. 5, pp. 243–255, 1975. View at Scopus
  16. D. L. Cochran, “Inflammation and bone loss in periodontal disease,” Journal of Periodontology, vol. 79, no. 8, supplement, pp. 1569–1576, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. H. S. Oz and D. A. Puleo, “Animal models for periodontal disease,” Journal of Biomedicine and Biotechnology, vol. 2011, Article ID 754857, 8 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Liu, H. S. Bal, T. Desta et al., “Diabetes enhances periodontal bone loss through enhanced resorption and diminished bone formation,” Journal of Dental Research, vol. 85, no. 6, pp. 510–514, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. C. A. Genco, T. Van Dyke, and S. Amar, “Animal models for Porphyromonas gingivalis-mediated periodontal disease,” Trends in Microbiology, vol. 6, no. 11, pp. 444–449, 1998. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Ogasawara, Y. Yoshimine, T. Kiyoshima et al., “In situ expression of RANKL, RANK, osteoprotegerin and cytokines in osteoclasts of rat periodontal tissue,” Journal of Periodontal Research, vol. 39, no. 1, pp. 42–49, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. M. A. Taubman, P. Valverde, X. Han, and T. Kawai, “Immune response: they key to bone resorption in periodontal disease,” Journal of Periodontology, vol. 76, no. 11, supplement, pp. 2033–2041, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Minkin, “Bone acid phosphatase: tartrate-resistant acid phosphatase as a marker of osteoclast function,” Calcified Tissue International, vol. 34, no. 3, pp. 285–290, 1982. View at Scopus
  23. E. F. Rossomando, J. E. Kennedy, and J. Hadjimichael, “Tumour necrosis factor alpha in gingival crevicular fluid as a possible indicator of periodontal disease in humans,” Archives of Oral Biology, vol. 35, no. 6, pp. 431–434, 1990. View at Publisher · View at Google Scholar · View at Scopus
  24. W. J. Grzesik and A. S. Narayanan, “Cementum and periodontal wound healing and regeneration,” Critical Reviews in Oral Biology and Medicine, vol. 13, no. 6, pp. 474–484, 2002. View at Scopus
  25. J. E. Rogers, F. Li, D. D. Coatney et al., “Actinobacillus actinomycetemcomitans Lipopolysaccharide-mediated experimental bone loss model for aggressive periodontitis,” Journal of Periodontology, vol. 78, no. 3, pp. 550–558, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Kwan Tat, M. Padrines, S. Theoleyre, D. Heymann, and Y. Fortun, “IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology,” Cytokine and Growth Factor Reviews, vol. 15, no. 1, pp. 49–60, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Graves, “Cytokines that promote periodontal tissue destruction,” Journal of Periodontology, vol. 79, no. 8, supplement, pp. 1585–1591, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Ma, J. Guo, X. You, W. Xia, and F. Yan, “Expressions of interleukin-1 β and interleukin-6 within aortas and uteri of rats with various severities of ligature-induced periodontitis,” Inflammation, vol. 34, no. 4, pp. 260–268, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Kobayashi, N. Takahashi, E. Jimi et al., “Tumor necrosis factor α stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction,” Journal of Experimental Medicine, vol. 191, no. 2, pp. 275–285, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. K. Fuller, C. Murphy, B. Kirstein, S. W. Fox, and T. J. Chambers, “TNFα potently activates osteoclasts, through a direct action independent of and strongly synergistic with RANKL,” Endocrinology, vol. 143, no. 3, pp. 1108–1118, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Anastasi, G. Cordasco, G. Matarese et al., “An immunohistochemical, histological, and electron-microscopic study of the human periodontal ligament during orthodontic treatment,” International Journal of Molecular Medicine, vol. 21, no. 5, pp. 545–554, 2008. View at Scopus
  32. M. J. Björnsson, S. Velschow, K. Stoltze, A. Havemose-Poulsen, S. Schou, and P. Holmstrup, “The influence of diet consistence, drinking water and bedding on periodontal disease in Sprague-Dawley rats,” Journal of Periodontal Research, vol. 38, no. 6, pp. 543–550, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Heijl, J. Wennstrom, J. Lindhe, and S. S. Socransky, “Periodontal disease in gnotobiotic rats,” Journal of Periodontal Research, vol. 15, no. 4, pp. 405–419, 1980. View at Scopus
  34. H. Sicher and J. P. Weinmann, “Bone growth and physiologic tooth movement,” The American Journal of Orthodontics and Oral Surgery, vol. 30, no. 3, pp. C109–C132, 1944. View at Scopus
  35. R. P. Herber, J. Fong, S. A. Lucas, and S. P. Ho, “Imaging an adapted dentoalveolar complex,” Anatomy Research International, vol. 2012, Article ID 782571, 13 pages, 2012. View at Publisher · View at Google Scholar
  36. K. J. Ibbotson, G. D. Roodman, L. M. McManus, and G. R. Mundy, “Identification and characterization of osteoclast-like cells and their progenitors in cultures of feline marrow mononuclear cells,” Journal of Cell Biology, vol. 99, no. 2, pp. 471–480, 1984. View at Scopus
  37. A. Sawyer, P. Lott, J. Titrud, and J. M. McDonald, “Quantification of tartrate resistant acid phosphatase distribution in mouse tibiae using image analysis,” Biotechnic and Histochemistry, vol. 78, no. 5, pp. 271–278, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. L. C. U. Junqueira, G. Bignolas, and R. R. Brentani, “Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections,” Histochemical Journal, vol. 11, no. 4, pp. 447–455, 1979. View at Scopus
  39. S. P. Ho, B. Yu, W. Yun, G. W. Marshall, M. I. Ryder, and S. J. Marshall, “Structure, chemical composition and mechanical properties of human and rat cementum and its interface with root dentin,” Acta Biomaterialia, vol. 5, no. 2, pp. 707–718, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. M. P. Galvão, C. K. Rösing, and M. B. Ferreira, “Effects of ligature-induced periodontitis in pregnant Wistar rats,” Brazilian Oral Research, vol. 17, no. 1, pp. 51–55, 2003. View at Scopus
  41. A. Györfi, A. Fazekas, Z. Suba, F. Ender, and L. Rosivall, “Neurogenic component in ligature-induced periodontitis in the rat,” Journal of Clinical Periodontology, vol. 21, no. 9, pp. 601–605, 1994. View at Scopus
  42. A. Kuhr, A. Popa-Wagner, H. Schmoll, C. Schwahn, and T. Kocher, “Observations on experimental marginal periodontitis in rats,” Journal of Periodontal Research, vol. 39, no. 2, pp. 101–106, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. K. Sallay, F. Sanavi, I. Ring, P. Pham, U. H. Behling, and A. Nowotny, “Alveolar bone destruction in the immunosuppressed rat,” Journal of Periodontal Research, vol. 17, no. 3, pp. 263–274, 1982. View at Scopus
  44. S. Kimura, A. Nagai, T. Onitsuka et al., “Induction of experimental periodontitis in mice with Porphyromonas gingivalis-adhered ligatures,” Journal of Periodontology, vol. 71, no. 7, pp. 1167–1173, 2000. View at Scopus
  45. R. Achong, I. Nishimura, H. Ramachandran, T. H. Howell, J. P. Fiorellini, and N. Y. Karimbux, “Membrane type (MT) 1-matrix metalloproteinase (MMP) and MMP-2 expression in ligature-induced periodontitis in the rat,” Journal of Periodontology, vol. 74, no. 4, pp. 494–500, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. J. P. Bezerra, L. R. F. Da Silva, V. A. D. A. Lemos, P. M. Duarte, and M. F. Bastos, “Administration of high doses of caffeine increases alveolar bone loss in ligature-induced periodontitis in rats,” Journal of Periodontology, vol. 79, no. 12, pp. 2356–2360, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. X. Cai, C. Li, G. Du, and Z. Cao, “Protective effects of baicalin on ligature-induced periodontitis in rats,” Journal of Periodontal Research, vol. 43, no. 1, pp. 14–21, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. G. D. R. Nogueira-Filho, B. T. Rosa, J. B. César-Neto, R. S. Tunes, and U. D. R. Tunes, “Low- and high-yield cigarette smoke inhalation potentiates bone loss during ligature-induced periodontitis,” Journal of Periodontology, vol. 78, no. 4, pp. 730–735, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. K. Okuda, T. Kato, Y. Naito et al., “Protective efficacy of active and passive immunizations against experimental infection with Bacteroides gingivalis in ligated hamsters,” Journal of Dental Research, vol. 67, no. 5, pp. 807–811, 1988. View at Scopus
  50. Y. Samejima, S. Ebisu, and H. Okada, “Effect of infection with Eikenella corrodens on the progression of ligature-induced periodontitis in rats,” Journal of Periodontal Research, vol. 25, no. 5, pp. 308–315, 1990. View at Scopus
  51. F. Sanavi, M. A. Listgarten, F. Boyd, K. Sallay, and A. Nowotny, “The colonization and establishment of invading bacteria in periodontium of ligature-treated immunosuppressed rats,” Journal of Periodontology, vol. 56, no. 5, pp. 273–280, 1985. View at Scopus
  52. T. Suda, N. Takahashi, N. Udagawa, E. Jimi, M. T. Gillespie, and T. J. Martin, “Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families,” Endocrine Reviews, vol. 20, no. 3, pp. 345–357, 1999. View at Scopus
  53. T. J. Chambers, “Regulation of the differentiation and function of osteoclasts,” The Journal of Pathology, vol. 192, no. 1, pp. 4–13, 2000.
  54. T. Wada, T. Nakashima, N. Hiroshi, and J. M. Penninger, “RANKL-RANK signaling in osteoclastogenesis and bone disease,” Trends in Molecular Medicine, vol. 12, no. 1, pp. 17–25, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Lam, S. Takeshita, J. E. Barker, O. Kanagawa, F. P. Ross, and S. L. Teitelbaum, “TNF-α induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand,” Journal of Clinical Investigation, vol. 106, no. 12, pp. 1481–1488, 2000. View at Scopus
  56. C. T. Ritchlin, S. A. Haas-Smith, P. Li, D. G. Hicks, and E. M. Schwarz, “Mechanisms of TNF-α- and RANKL-mediated osteoclastogenesis and bone resorption in psoriatic arthritis,” Journal of Clinical Investigation, vol. 111, no. 6, pp. 821–831, 2003. View at Publisher · View at Google Scholar · View at Scopus
  57. H. Lin, S. W. Wang, R. Y. Wang, and P. S. Wang, “Tumor necrosis factor-α mediates RANK ligand stimulation of osteoclast differentiation by an autocrine mechanism,” Journal of Cellular Biochemistry, vol. 83, no. 1, pp. 70–83, 2001. View at Publisher · View at Google Scholar · View at Scopus
  58. R. Assuma, T. Oates, D. Cochran, S. Amar, and D. T. Graves, “IL-1 and TNF antagonists inhibit the inflammatory response and bone loss in experimental periodontitis,” Journal of Immunology, vol. 160, no. 1, pp. 403–409, 1998. View at Scopus
  59. D. T. Graves, A. J. Delima, R. Assuma, S. Amar, T. Oates, and D. Cochran, “Interleukin-1 and tumor necrosis factor antagonists inhibit the progression of inflammatory cell infiltration toward alveolar bone in experimental periodontitis,” Journal of Periodontology, vol. 69, no. 12, pp. 1419–1425, 1998. View at Scopus
  60. A. J. Delima, T. Oates, R. Assuma et al., “Soluble antagonists to interleukin-1 (IL-1) and Tumor Necrosis Factor (TNF) inhibits loss of tissue attachment in experimental periodontitis,” Journal of Clinical Periodontology, vol. 28, no. 3, pp. 233–240, 2001. View at Scopus
  61. S. Hashimoto, T. Yamamura, and M. Shimono, “Morphometric analysis of the intercellular space and desmosomes of rat junctional epithelium,” Journal of periodontal research, vol. 21, no. 5, pp. 510–520, 1986. View at Scopus
  62. N. L. Leong, J. M. Hurng, S. I. Djomehri, S. A. Gansky, M. I. Ryder, and S. P. Ho, “Age-related adaptation of bone-PDL-tooth complex: Rattus-Norvegicus as a model system,” PloS One, vol. 7, no. 4, Article ID e35980, 2012.
  63. C. M. Belting, I. Schour, J. P. Weinmann, and M. J. Shepro, “Age changes in the periodontal tissues of the rat molar,” Journal of Dental Research, vol. 32, no. 3, pp. 332–353, 1953. View at Scopus
  64. J. C. McLeod and E. Balish, “Endotoxin in germfree, gnotobiotic, or conventional-flora Sprague-Dawley rats,” Canadian Journal of Microbiology, vol. 24, no. 12, pp. 1602–1606, 1978. View at Scopus
  65. R. A. Adams, H. A. Zander, and A. M. Polson, “Cell populations in the transseptal fiber region before, during and after experimental periodontitis in squirrel monkeys,” Journal of Periodontology, vol. 50, no. 1, pp. 7–12, 1979. View at Scopus
  66. S. Nyman, H. E. Schroeder, and J. Lindhe, “Suppression of inflammation and bone resorption by indomethacin during experimental periodontitis in dogs,” Journal of Periodontology, vol. 50, no. 9, pp. 450–461, 1979. View at Scopus
  67. L. Heijl, B. R. Rifkin, and H. A. Zander, “Conversion of chronic gingivitis to periodontitis in squirrel monkeys,” Journal of Periodontology, vol. 47, no. 12, pp. 710–716, 1976. View at Scopus
  68. H. E. Schroeder and J. Lindhe, “Conversion of stable established gingivitis in the dog into destructive periodontitis,” Archives of Oral Biology, vol. 20, no. 12, pp. 775–782, 1975. View at Scopus
  69. C. H. Li and S. Amar, “Morphometric, histomorphometric, and microcomputed tomographic analysis of periodontal inflammatory lesions in a murine model,” Journal of Periodontology, vol. 78, no. 6, pp. 1120–1128, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. J. D. Lin, H. Ozcoban, J. Greene et al., “Biomechanics of a bone-periodontal ligament-tooth fibrous joint,” Journal of Biomechanics, vol. 46, no. 3, pp. 443–449, 2012. View at Publisher · View at Google Scholar
  71. L. Qian, M. Todo, Y. Morita, Y. Matsushita, and K. Koyano, “Deformation analysis of the periodontium considering the viscoelasticity of the periodontal ligament,” Dental Materials, vol. 25, no. 10, pp. 1285–1292, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. S. P. Ho, M. P. Kurylo, T. K. Fong et al., “The biomechanical characteristics of the bone-periodontal ligament-cementum complex,” Biomaterials, vol. 31, no. 25, pp. 6635–6646, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. J. D. Lin, S. Aloni, V. Altoe, S. M. Webb, M. I. Ryder, and S. P. Ho, “Elastic discontinuity due to ectopic calcification in a human fibrous joint,” Acta Biomaterialia, vol. 9, no. 1, pp. 4787–4795, 2012. View at Publisher · View at Google Scholar
  74. K. Nozaki, M. Kaku, Y. Yamashita, M. Yamauchi, and H. Miura, “Effect of cyclic mechanical loading on osteoclast recruitment in periodontal tissue,” Journal of Periodontal Research, vol. 45, no. 1, pp. 8–15, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. C. G. Walker, Y. Ito, S. Dangaria, X. Luan, and T. G. H. Diekwisch, “RANKL, osteopontin, and osteoclast homeostasis in a hyperocclusion mouse model,” European Journal of Oral Sciences, vol. 116, no. 4, pp. 312–318, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. Z. Zhong, X. L. Zeng, J. H. Ni, and X. F. Huang, “Comparison of the biological response of osteoblasts after tension and compression,” European Journal of Orthodontics, vol. 35, no. 1, pp. 59–65, 2011. View at Publisher · View at Google Scholar
  77. K. Nakao, T. Goto, K. K. Gunjigake, T. Konoo, S. Kobayashi, and K. Yamaguchi, “Intermittent force induces high RANKL expression in human periodontal ligament cells,” Journal of Dental Research, vol. 86, no. 7, pp. 623–628, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. Y. Li, W. Zheng, J. S. Liu et al., “Expression of osteoclastogenesis inducers in a tissue model of periodontal ligament under compression,” Journal of Dental Research, vol. 90, no. 1, pp. 115–120, 2011. View at Publisher · View at Google Scholar · View at Scopus
  79. B. L. Foster, “Methods for studying tooth root cementum by light microscopy,” International Journal of Oral Science, vol. 4, no. 3, pp. 119–128, 2012.
  80. M. A. Matias, H. Li, W. G. Young, and P. M. Bartold, “Immunohistochemical localisation of extracellular matrix proteins in the periodontium during cementogenesis in the rat molar,” Archives of Oral Biology, vol. 48, no. 10, pp. 709–716, 2003. View at Publisher · View at Google Scholar · View at Scopus
  81. R. L. MacNeil and M. J. Somerman, “Molecular factors regulating development and regeneration of cementum,” Journal of Periodontal Research, vol. 28, no. 6, pp. 550–559, 1993. View at Scopus
  82. Y. He, E. J. Macarak, J. M. Korostoff, and P. S. Howard, “Compression and tension: differential effects on matrix accumulation by periodontal ligaments fibroblasts in vitro,” Connective Tissue Research, vol. 45, no. 1, pp. 28–39, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. P. S. Howard, U. Kucich, R. Taliwal, and J. M. Korostoff, “Mechanical forces alter extracellular matrix synthesis by human periodontal ligament fibroblasts,” Journal of Periodontal Research, vol. 33, no. 8, pp. 500–508, 1998. View at Scopus
  84. R. L. Steward, C. M. Cheng, J. D. Ye, R. M. Bellin, and P. R. Leduc, “Mechanical stretch and shear flow induced reorganization and recruitment of fibronectin in fibroblasts,” Scientific Reports, vol. 1, p. 147, 2011.
  85. T. Shibutani, Y. Murahashi, E. Tsukada, Y. Iwayama, and J. N. M. Heersche, “Experimentally induced periodontitis in beagle dogs causes rapid increases in osteoclastic resorption of alveolar bone,” Journal of Periodontology, vol. 68, no. 4, pp. 385–391, 1997. View at Scopus
  86. A. M. Parfitt, “The cellular basis of bone remodeling: the quantum concept reexamined in light of recent advances in the cell biology of bone,” Calcified Tissue International, vol. 36, no. 1, pp. S37–S45, 1984. View at Scopus