About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 878374, 19 pages
http://dx.doi.org/10.1155/2013/878374
Research Article

Reproducibility of NMR Analysis of Urine Samples: Impact of Sample Preparation, Storage Conditions, and Animal Health Status

1numares GROUP, Josef Engert Straße 9, 93053 Regensburg, Germany
2Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine, University of Regensburg, 93040 Regensburg, Germany
3Department of Computer Science, Technical University Dortmund, Otto-Hahn-Straße 16, 44221 Dortmund, Germany
4Group General Pharmacology, Department Drug Discovery Support, Boehringer-Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany

Received 25 February 2013; Revised 21 May 2013; Accepted 22 May 2013

Academic Editor: Anita M. Oberbauer

Copyright © 2013 Christina Schreier et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Fura, T. W. Harper, H. Zhang, L. Fung, and W. C. Shyu, “Shift in pH of biological fluids during storage and processing: effect on bioanalysis,” Journal of Pharmaceutical and Biomedical Analysis, vol. 32, no. 3, pp. 513–522, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Lauridsen, S. H. Hansen, J. W. Jaroszewski, and C. Cornett, “Human urine as test material in 1H NMR-based metabonomics: recommendations for sample preparation and storage,” Analytical Chemistry, vol. 79, no. 3, pp. 1181–1186, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Miyataka, T. Ozaki, and S. Himeno, “Effect of pH on 1H-NMR spectroscopy of mouse urine,” Biological and Pharmaceutical Bulletin, vol. 30, no. 4, pp. 667–670, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. O. Beckonert, H. C. Keun, T. M. D. Ebbels et al., “Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts,” Nature Protocols, vol. 2, no. 11, pp. 2692–2703, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. N. B. Roberts, G. Higgins, and M. Sargazi, “A study on the stability of urinary free catecholamines and free methyl-derivatives at different pH, temperature and time of storage,” Clinical Chemistry and Laboratory Medicine, vol. 48, no. 1, pp. 81–87, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Veljkovic, K. Rodríguez-Capote, V. Bhayana et al., “Assessment of a four hour delay for urine samples stored without preservatives at room temperature for urinalysis,” Clinical Biochemistry, vol. 45, no. 10-11, pp. 856–858, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Hirano, Y. Yamamura, S. Nakamura, T. Onogawa, and T. Mori, “Effects of the V2-receptor antagonist OPC-41061 and the loop diuretic furosemide alone and in combination in rats,” Journal of Pharmacology and Experimental Therapeutics, vol. 292, no. 1, pp. 288–294, 2000. View at Scopus
  8. T. E. N. Jonassen, A.-M. Sørensen, J. S. Petersen, F. Andreasens, and S. Christensen, “Increased natriuretic efficiency of furosemide in rats with carbon tetrachloride-induced cirrhosis,” Hepatology, vol. 31, no. 6, pp. 1224–1230, 2000. View at Scopus
  9. S. Pestel, V. Krzykalla, and G. Weckesser, “Measurement of glomerular filtration rate in the conscious rat,” Journal of Pharmacological and Toxicological Methods, vol. 56, no. 3, pp. 277–289, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. V. Karajala, W. Mansour, and J. A. Kellum, “Diuretics in acute kidney injury,” Minerva Anestesiologica, vol. 75, no. 5, pp. 251–257, 2009. View at Scopus
  11. L. Jiang, J. Huang, Y. Wang, and H. Tang, “Eliminating the dication-induced intersample chemical-shift variations for NMR-based biofluid metabonomic analysis,” Analyst, vol. 137, no. 18, pp. 4209–4219, 2012.
  12. US department of health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Veterinary Medicine (CVM), in Guidance for Industry. Bioanalytical Method Validation, 2001.
  13. S. Pestel, H.-J. Martin, G.-M. Maier, and B. Guth, “Effect of commonly used vehicles on gastrointestinal, renal, and liver function in rats,” Journal of Pharmacological and Toxicological Methods, vol. 54, no. 2, pp. 200–214, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Holmes, J. K. Nicholson, A. W. Nicholls et al., “The identification of novel biomarkers of renal toxicity using automatic data reduction techniques and PCA of proton NMR spectra of urine,” Chemometrics and Intelligent Laboratory Systems, vol. 44, no. 1-2, pp. 245–255, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. H. S. Kim, S. H. Cha, D. G. Abraham, A. J. L. Cooper, and H. Endou, “Intranephron distribution of cysteine S-conjugate β-lyase activity and its implication for hexachloro-1,3-butadiene-induced nephrotoxicity in rats,” Archives of Toxicology, vol. 71, no. 3, pp. 131–141, 1997. View at Publisher · View at Google Scholar · View at Scopus
  16. E. J. Saude, D. Adamko, B. H. Rowe, T. Marrie, and B. D. Sykes, “Variation of metabolites in normal human urine,” Metabolomics, vol. 3, no. 4, pp. 439–451, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. C. M. Slupsky, K. N. Rankin, J. Wagner et al., “Investigations of the effects of gender, diurnal variation, and age in human urinary metabolomic profiles,” Analytical Chemistry, vol. 79, no. 18, pp. 6995–7004, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. National Toxicology Program, “Toxicology and carcinogenesis studies of chromium picolinate monohydrate (CAS No. 27882-76-4) in F344/N rats and B6C3F1 mice (feed studies),” National Toxicology Program Technical Report Series, vol. 356, no. 556, pp. 1–190, 2010. View at Scopus
  19. K. Lienemann, T. Plötz, and S. Pestel, “NMR-based urine analysis in rats: prediction of proximal tubule kidney toxicity and phospholipidosis,” Journal of Pharmacological and Toxicological Methods, vol. 58, no. 1, pp. 41–49, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Lienemann, T. Plötz, and G. A. Fink, “Stacking for ensembles of local experts in metabonomic applications,” in Multiple Classifier Systems, J. A. Benediktsson, J. Kittler, and F. Roli, Eds., vol. 5519 of Lecture Notes in Computer Science, pp. 498–508, Springer, Berlin, Germany, 2009. View at Publisher · View at Google Scholar
  21. M. Spraul, P. Neidig, U. Klauck et al., “Automatic reduction of NMR spectroscopic data for statistical and pattern recognition classification of samples,” Journal of Pharmaceutical and Biomedical Analysis, vol. 12, no. 10, pp. 1215–1225, 1994. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Schölkopf and A. J. Smola, Learning With Kernels: Support Vector Machines, Regularization, Optimization and Beyond, MIT Press, Cambridge, Mass, USA, 2002.
  23. E. Holmes, J. K. Nicholson, and G. Tranter, “Metabonomic characterization of genetic variations in toxicological and metabolic responses using probabilistic neural networks,” Chemical Research in Toxicology, vol. 14, no. 2, pp. 182–191, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. J. P. Shockcor and E. Holmes, “Metabonomic applications in toxicity screening and disease diagnosis,” Current topics in medicinal chemistry, vol. 2, no. 1, pp. 35–51, 2002. View at Scopus
  25. A. D. Maher, S. F. M. Zirah, E. Holmes, and J. K. Nicholson, “Experimental and analytical variation in human urine in 1H NMR spectroscopy-based metabolic phenotyping studies,” Analytical Chemistry, vol. 79, no. 14, pp. 5204–5211, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. D. J. Crockford, H. C. Keun, L. M. Smith, E. Holmes, and J. K. Nicholson, “Curve-fitting method for direct quantitation of compounds in complex biological mixtures using1H NMR: application in metabonomic toxicology studies,” Analytical Chemistry, vol. 77, no. 14, pp. 4556–4562, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. Bundesärztekammer Arbeitsgemeinschaft der deutschen Ärztekammern, “Richtlinie der Bundesärztekammer zur Qualitätssicherung laboratoriumsmedizinischer Untersuchungen, gemäß Beschluss des Vorstandes der Bundesärztekammer vom 23.11.2007,” Deutsches Ärzteblatt, vol. 105, no. 7, pp. 341–355, 2008, updated in, Deutsches Ärzteblatt, vol. 108, no. 43, pp. 2298–2304, 2011.
  28. Z. Pan and D. Raftery, “Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics,” Analytical and Bioanalytical Chemistry, vol. 387, no. 2, pp. 525–527, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. T. D. Veenstra, “Metabolomics: the final frontier?” Genome Medicine, vol. 4, no. 4, article 40, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. B. T. Welsh and J. Mapes, “QC white paper: an overview of assay quality systems at myriad RBM Inc,” Myriad RBM.
  31. W. Gronwald, M. S. Klein, H. Kaspar et al., “Urinary metabolite quantification employing 2D NMR spectroscopy,” Analytical Chemistry, vol. 80, no. 23, pp. 9288–9297, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Craig, O. Cloarec, E. Holmes, J. K. Nicholson, and J. C. Lindon, “Scaling and normalization effects in NMR spectroscopic metabonomic data sets,” Analytical Chemistry, vol. 78, no. 7, pp. 2262–2267, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Mercier, M. J. Lewis, D. Chang, D. Baker, and D. S. Wishart, “Towards automatic metabolomic profiling of high-resolution one-dimensional proton NMR spectra,” Journal of Biomolecular NMR, vol. 49, no. 3-4, pp. 307–323, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. K. A. Veselkov, J. C. Lindon, T. M. D. Ebbels et al., “Recursive segment-wise peak alignment of biological1H NMR spectra for improved metabolic biomarker recovery,” Analytical Chemistry, vol. 81, no. 1, pp. 56–66, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. A. L. Petri, C. Høgdall, I. J. Christensen et al., “Sample handling for mass spectrometric proteomic investigations of human urine,” Proteomics, vol. 2, no. 9, pp. 1184–1193, 2008. View at Publisher · View at Google Scholar · View at Scopus