About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 879080, 10 pages
http://dx.doi.org/10.1155/2013/879080
Research Article

Proteinase-Activated Receptor-2 Agonist Activates Anti-Influenza Mechanisms and Modulates IFNγ-Induced Antiviral Pathways in Human Neutrophils

1Department of Dermatology, Heinrich-Heine University, 40225 Düsseldorf, Germany
2Leibniz-Institute for Analytical Sciences (ISAS), 44139 Dortmund, Germany
3Institute of Molecular Virology, ZMBE, Westfälische Wilhelms-University of Münster, 48149 Münster, Germany
4Department of Dermatology and Boltzmann Institute for Immunobiology of the Skin, Westfälische Wilhelms-University of Münster, 48149 Münster, Germany
5Departments of Dermatology and Surgery, University of California San Francisco (UCSF), San Francisco, CA 94143, USA

Received 29 April 2013; Accepted 12 August 2013

Academic Editor: Richard Tucker

Copyright © 2013 Micha Feld et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Shpacovitch, M. Feld, M. D. Hollenberg, T. A. Luger, and M. Steinhoff, “Role of protease-activated receptors in inflammatory responses, innate and adaptive immunity,” Journal of Leukocyte Biology, vol. 83, no. 6, pp. 1309–1322, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. V. Shpacovitch, M. Feld, N. W. Bunnett, and M. Steinhoff, “Protease-activated receptors: novel PARtners in innate immunity,” Trends in Immunology, vol. 28, no. 12, pp. 541–550, 2007. View at Scopus
  3. M. Steinhoff, J. Buddenkotte, V. Shpacovitch et al., “Proteinase-activated receptors: transducers of proteinase-mediated signaling in inflammation and immune response,” Endocrine Reviews, vol. 26, no. 1, pp. 1–43, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Corteling, O. Bonneau, S. Ferretti, M. Ferretti, and A. Trifilieff, “Differential DNA synthesis in response to activation of protease-activated receptors on cultured guinea-pig tracheal smooth muscle cells,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 368, no. 1, pp. 10–16, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. M. D. Hollenberg, “Physiology and pathophysiology of proteinase-activated receptors (PARs): proteinases as hormone-like signal messengers: PARs and more,” Journal of Pharmacological Sciences, vol. 97, no. 1, pp. 8–13, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Stech, H. Garn, M. Wegmann, R. Wagner, and H.-D. Klenk, “A new approach to an influenza live vaccine: modification of the cleavage site of hemagglutinin,” Nature Medicine, vol. 11, no. 6, pp. 683–689, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Schroder, P. J. Hertzog, T. Ravasi, and D. A. Hume, “Interferon-γ: an overview of signals, mechanisms and functions,” Journal of Leukocyte Biology, vol. 75, no. 2, pp. 163–189, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Feld, V. M. Shpacovitch, C. Ehrhardt et al., “Agonists of proteinase-activated receptor-2 enhance IFN-γ-inducible effects on human monocytes: role in influenza A infection,” The Journal of Immunology, vol. 180, no. 10, pp. 6903–6910, 2008. View at Scopus
  9. K. Khoufache, F. Lebouder, E. Morello et al., “Protective role for protease-activated receptor-2 against influenza virus pathogenesis via an IFN-γ-dependent pathway,” The Journal of Immunology, vol. 182, no. 12, pp. 7795–7802, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. V. M. Shpacovitch, M. Feld, D. Holzinger et al., “Role of proteinase-activated receptor-2 in anti-bacterial and immunomodulatory effects of interferon-γ on human neutrophils and monocytes,” Immunology, vol. 133, no. 3, pp. 329–339, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Tate, Y. M. Deng, J. E. Jones, G. P. Anderson, A. G. Brooks, and P. C. Reading, “Neutrophils ameliorate lung injury and the development of severe disease during influenza infection,” The Journal of Immunology, vol. 183, no. 11, pp. 7441–7450, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Tate, L. J. Ioannidis, B. Croker, L. E. Brown, A. G. Brooks, and P. C. Reading, “The role of neutrophils during mild and severe influenza virus infections of mice,” PLoS ONE, vol. 6, no. 3, Article ID e17618, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. G. L. Howells, M. G. Macey, C. Chinni et al., “Proteinase-activated receptor-2: expression by human neutrophils,” Journal of Cell Science, vol. 110, no. 7, pp. 881–887, 1997. View at Scopus
  14. V. M. Shpacovitch, G. Varga, A. Strey et al., “Agonists of proteinase-activated receptor-2 modulate human neutrophil cytokine secretion, expression of cell adhesion molecules, and migration within 3-D collagen lattices,” Journal of Leukocyte Biology, vol. 76, no. 2, pp. 388–398, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. V. Witko-Sarsat, P. Rieu, B. Descamps-Latscha, P. Lesavre, and L. Halbwachs-Mecarelli, “Neutrophils: molecules, functions and pathophysiological aspects,” Laboratory Investigation, vol. 80, no. 5, pp. 617–653, 2000. View at Scopus
  16. M. A. Horisberger, “Interferons, Mx genes, and resistance to influenza virus,” American Journal of Respiratory and Critical Care Medicine, vol. 152, no. 4, pp. S67–S71, 1995. View at Scopus
  17. F. Flohr, S. Schneider-Schaulies, O. Haller, and G. Kochs, “The central interactive region of human MxA GTPase is involved in GTPase activation and interaction with viral target structures,” FEBS Letters, vol. 463, no. 1-2, pp. 24–28, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. V. M. Shpacovitch, S. Seeliger, M. Huber-lang et al., “Agonists of proteinase-activated receptor-2 affect transendothelial migration and apoptosis of human neutrophils,” Experimental Dermatology, vol. 16, no. 10, pp. 799–806, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Doss, M. R. White, T. Tecle et al., “Interactions of α-,β-, and θ-defensins with influenza A virus and surfactant protein D,” The Journal of Immunology, vol. 182, no. 12, pp. 7878–7887, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Yamamoto, T. Miyoshi-Koshio, Y. Utsuki, S. Mizuno, and K. Suzuki, “Virucidal activity and viral protein modification by myeloperoxidase: a candidate for defense factor of human polymorphonuclear leukocytes against influenza virus infection,” Journal of Infectious Diseases, vol. 164, no. 1, pp. 8–14, 1991. View at Scopus
  21. X. Su, E. Camerer, J. R. Hamilton, S. R. Coughlin, and M. A. Matthay, “Protease-activated receptor-2 activation induces acute lung inflammation by neuropeptide-dependent mechanisms,” The Journal of Immunology, vol. 175, no. 4, pp. 2598–2605, 2005. View at Scopus
  22. M. D. Bootman, T. J. Collins, L. Mackenzie, H. Llewelyn Roderick, M. J. Berridge, and C. M. Peppiatt, “2-Aminoethoxydiphenyl borate (2-APB) is a reliable blocker of store-operated Ca2+ entry but an inconsistent inhibitor of InsP3-induced Ca2+ release,” FASEB Journal, vol. 16, no. 10, pp. 1145–1150, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. I. C. Allen, M. A. Scull, C. B. Moore et al., “The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA,” Immunity, vol. 30, no. 4, pp. 556–565, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Bylund, S. Pellme, H. Fu, et al., “Cytochalasin B triggers a novel pertussis toxin sensitive pathway in TNF-alpha primed neutrophils,” BMC Cell Biology, vol. 5, article 21, 2004. View at Publisher · View at Google Scholar
  25. P. G. Barlow, P. Svoboda, A. Mackellar, et al., “Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37,” PloS ONE, vol. 6, no. 8, Article ID e25333, 2011. View at Publisher · View at Google Scholar
  26. C. Ehrhardt, R. Seyer, E. R. Hrincius, T. Eierhoff, T. Wolff, and S. Ludwig, “Interplay between influenza A virus and the innate immune signaling,” Microbes and Infection, vol. 12, no. 1, pp. 81–87, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Aebi, J. Fäh, N. Hurt et al., “cDNA structures and regulation of two interferon-induced human Mx proteins,” Molecular and Cellular Biology, vol. 9, no. 11, pp. 5062–5072, 1989. View at Scopus
  28. S. Mahalingam, J. Meanger, P. S. Foster, and B. A. Lidbury, “The viral manipulation of the host cellular and immune environments to enhance propagation and survival: a focus on RNA viruses,” Journal of Leukocyte Biology, vol. 72, no. 3, pp. 429–439, 2002. View at Scopus