About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 890803, 7 pages
http://dx.doi.org/10.1155/2013/890803
Research Article

Arsenic, Zinc, and Aluminium Removal from Gold Mine Wastewater Effluents and Accumulation by Submerged Aquatic Plants (Cabomba piauhyensis, Egeria densa, and Hydrilla verticillata)

1Geology Department, Faculty of Science, University Malaya, 50603 Kuala Lumpur, Malaysia
2Civil Engineering Department, Faculty of Engineering, University Malaya, 50603 Kuala Lumpur, Malaysia

Received 1 July 2013; Accepted 9 August 2013

Academic Editor: Qaisar Mahmood

Copyright © 2013 Ahmad Farid Abu Bakar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The potential of three submerged aquatic plant species (Cabomba piauhyensis, Egeria densa, and Hydrilla verticillata) to be used for As, Al, and Zn phytoremediation was tested. The plants were exposed for 14 days under hydroponic conditions to mine waste water effluents in order to assess the suitability of the aquatic plants to remediate elevated multi-metals concentrations in mine waste water. The results show that the E. densa and H. verticillata are able to accumulate high amount of arsenic (95.2%) and zinc (93.7%) and resulted in a decrease of arsenic and zinc in the ambient water. On the other hand, C. piauhyensis shows remarkable aluminium accumulation in plant biomass (83.8%) compared to the other tested plants. The ability of these plants to accumulate the studied metals and survive throughout the experiment demonstrates the potential of these plants to remediate metal enriched water especially for mine drainage effluent. Among the three tested aquatic plants, H. verticillata was found to be the most applicable (84.5%) and suitable plant species to phytoremediate elevated metals and metalloid in mine related waste water.