About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 895967, 6 pages
http://dx.doi.org/10.1155/2013/895967
Review Article

3D-Culture System for Heart Regeneration and Cardiac Medicine

1Department of Pediatric Cardiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
2University of Toronto and University Health Network, Toronto, ON, Canada M5G 1L7

Received 30 April 2013; Accepted 19 July 2013

Academic Editor: Arun K. Sharma

Copyright © 2013 Nanako Kawaguchi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Braunwald, “Congestive heart failure: a half century perspective,” European Heart Journal, vol. 22, no. 10, pp. 825–836, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Braunwald and M. R. Bristow, “Congestive heart failure: fifty years of progress,” Circulation, vol. 102, no. 20, pp. IV14–IV23, 2000. View at Scopus
  3. D. Lloyd-Jones, R. Adams, M. Camethon, et al., “Heart disease and stroke statistics-2009 update, a report from American Heart Association Statistics Committee and Stroke Statistic Subcommittee,” Circulation, vol. 119, no. 3, pp. 480–486, 2009.
  4. E. Braunwald and M. A. Pfeffer, “Ventricular enlargement and remodeling following acute myocardial infarction: mechanisms and management,” American Journal of Cardiology, vol. 68, no. 14, pp. 1D–6D, 1991. View at Scopus
  5. K. Takahashi and S. Yamanaka, “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors,” Cell, vol. 126, no. 4, pp. 663–676, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Takahashi, K. Tanabe, M. Ohnuki et al., “Induction of pluripotent stem cells from adult human fibroblasts by defined factors,” Cell, vol. 131, no. 5, pp. 861–872, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Hattori, H. Chen, H. Yamashita et al., “Nongenetic method for purifying stem cell-derived cardiomyocytes,” Nature Methods, vol. 7, no. 1, pp. 61–66, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Egashira, S. Yuasa, and K. Fukuda, “Induced pluripotent stem cells in cardiovascular medicine,” Stem Cells International, vol. 2011, Article ID 348960, 7 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. N. C. Dubois, A. M. Craft, P. Sharma et al., “SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells,” Nature Biotechnology, vol. 29, no. 11, pp. 1011–1018, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Zhang, G. F. Wilson, A. G. Soerens et al., “Functional cardiomyocytes derived from human induced pluripotent stem cells,” Circulation Research, vol. 104, no. 4, pp. e30–e41, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. A. P. Beltrami, L. Barlucchi, D. Torella et al., “Adult cardiac stem cells are multipotent and support myocardial regeneration,” Cell, vol. 114, no. 6, pp. 763–776, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Miyamoto, N. Kawaguchi, G. M. Ellison, R. Matsuoka, T. Shin'Oka, and H. Kurosawa, “Characterization of long-term cultured c-kit+ cardiac stem cells derived from adult rat hearts,” Stem Cells and Development, vol. 19, no. 1, pp. 105–116, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Hasan, Y. Komoike, S. Tsunesumi et al., “Myogenic differentiation in atrium-derived adult cardiac pluripotent cells and the transcriptional regulation of GATA4 and myogenin on ANP promoter,” Genes to Cells, vol. 15, no. 5, pp. 439–454, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. N. Kawaguchi, A. Smith, C. D. Waring et al., “c-kitpos GATA-4 high rat cardiac stem cells foster adult cardiomyocyte survival through IGF-1 paracrine signalling,” PLoS ONE, vol. 5, no. 12, Article ID e14297, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. M. K. Gupta, D. J. Illich, A. Gaarz et al., “Global transcriptional profiles of beating clusters derived from human induced pluripotent stem cells and embryonic stem cells are highly similar,” BMC Developmental Biology, vol. 10, article 98, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Xi, M. Khalil, N. Shishechian et al., “Comparison of contractile behavior of native murine ventricular tissue and cardiomyocytes derived from embryonic or induced pluripotent stem cells,” The FASEB Journal, vol. 24, no. 8, pp. 2739–2751, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. J. K. Yamashita, “ES and iPS cell research for cardiovascular regeneration,” Experimental Cell Research, vol. 316, no. 16, pp. 2555–2559, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Kaichi, K. Hasegawa, T. Takaya et al., “Cell line-dependent differentiation of induced pluripotent stem cells into cardiomyocytes in mice,” Cardiovascular Research, vol. 88, no. 2, pp. 314–323, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Sumi, “Trends and challenges in iPS cell research,” Quarterly Review, vol. 32, pp. 11–21, 2009.
  20. N. Kawaguchi, R. Nakao, M. Yamaguchi, D. Ogawa, and R. Matsuoka, “TGF-β superfamily regulates a switch that mediates differentiation either into adipocytes or myocytes in left atrium derived pluripotent cells (LA-PCS),” Biochemical and Biophysical Research Communications, vol. 396, no. 3, pp. 619–625, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Radisic, H. Park, H. Shing et al., “Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 52, pp. 18129–18134, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. H. M. Ott, T. S. Matthiesen, S.-K. Goh et al., “Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart,” Nature Medicine, vol. 14, no. 2, pp. 213–221, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. J. J. Song and H. C. Ott, “Organ engineering based on decellularized matrix scaffolds,” Trends in Molecular Medicine, vol. 17, no. 8, pp. 424–432, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Bourgine, B. E. Pippenger, A. Todorov Jr., L. Tchang, and I. Martin, “Tissue decellularization by activation of programmed cell death,” Biomaterials, vol. 34, pp. 6099–6108, 2013.
  25. J. M. Singelyn and K. L. Christman, “Injectable materials for the treatment of myocardial infarction and heart failure: the promise of decellularized matrices,” Journal of Cardiovascular Translational Research, vol. 3, no. 5, pp. 478–486, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. J. M. Singelyn, J. A. DeQuach, S. B. Seif-Naraghi, R. B. Littlefield, P. J. Schup-Magoffin, and K. L. Christman, “Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering,” Biomaterials, vol. 30, no. 29, pp. 5409–5416, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. A. F. G. Godier-Furnémont, T. P. Martens, M. S. Koeckert et al., “Composite scaffold provides a cell delivery platform for cardiovascular repair,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 19, pp. 7974–7979, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. J. M. Singelyn, P. Sundaramurthy, T. D. Johnson et al., “Catheter-deliverable hydrogel derived from decellularized ventricular extracellular matrix increases endogenous cardiomyocytes and preserves cardiac function post-myocardial infarction,” Journal of the American College of Cardiology, vol. 59, no. 8, pp. 751–763, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. A. F. G. Godier-Furnémont, T. P. Martens, M. S. Koeckert et al., “Composite scaffold provides a cell delivery platform for cardiovascular repair,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 19, pp. 7974–7979, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. K. Tobita, L. J. Liu, A. M. Janczewski et al., “Engineered early embryonic cardiac tissue retains proliferative and contractile properties of developing embryonic myocardium,” American Journal of Physiology, vol. 291, no. 4, pp. H1829–H1837, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. R. E. Akins, D. Rockwood, K. G. Robinson, D. Sandusky, J. Rabolt, and C. Pizarro, “Three-dimensional culture alters primary cardiac cell phenotype,” Tissue Engineering A, vol. 16, no. 2, pp. 629–641, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. R. S. Kellar, L. K. Landeen, B. R. Shepherd, G. K. Naughton, A. Ratcliffe, and S. K. Williams, “Scaffold-based three-dimensional human fibroblast culture provides a structural matrix that supports angiogenesis in infarcted heart tissue,” Circulation, vol. 104, no. 17, pp. 2063–2068, 2004. View at Scopus
  33. H. Hosseinkhani, M. Hosseinkhani, S. Hattori, R. Matsuoka, and N. Kawaguchi, “Micro and nano-scale in vitro 3D culture system for cardiac stem cells,” Journal of Biomedical Materials Research A, vol. 94, no. 1, pp. 1–8, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Machida, Y. Takagaki, R. Matsuoka, and N. Kawaguchi, “Proteomic comparison of spherical aggregates and adherent cells of cardiac stem cells,” International Journal of Cardiology, vol. 153, no. 3, pp. 296–305, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Khademhosseini, R. Langer, J. Borenstein, and J. P. Vacanti, “Microscale technologies for tissue engineering and biology,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 8, pp. 2480–2487, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. A. A. Rane, J. S. Chuang, A. Shah et al., “Increased infarct wall thickness by a bio-inert material is insufficient to prevent negative left ventricular remodeling after myocardial infarction,” PLoS ONE, vol. 6, no. 6, Article ID e21571, 8 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. J. C. Garbern, E. Minami, P. S. Stayton, and C. E. Murry, “Delivery of basic fibroblast growth factor with a pH-responsive, injectable hydrogel to improve angiogenesis in infarcted myocardium,” Biomaterials, vol. 32, no. 9, pp. 2407–2416, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. W. N. Lu, S. H. Lu, H. B. Wang, et al., “Functional improvement of infracted heart by co-injection of embryonic stem cells with tempreture-responsive chitosan hydrogel,” Tissue Engineering A, vol. 15, pp. 1437–1447, 2009.
  39. N. F. Huang, J. Yu, R. Sievers, S. Li, and R. J. Lee, “Injectable biopolymers enhance angiogenesis after myocardial infarction,” Tissue Engineering A, vol. 11, no. 11-12, pp. 1860–1866, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. M. E. Davis, J. P. Motion, D. A. Narmoneva et al., “Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells,” Circulation, vol. 111, no. 4, pp. 442–450, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Shimizu, M. Yamato, A. Kikuchi, and T. Okano, “Cell sheet engineering for myocardial tissue reconstruction,” Biomaterials, vol. 24, no. 13, pp. 2309–2316, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. K. Matsuura, S. Masuda, Y. Haraguchi et al., “Creation of mouse embryonic stem cell-derived cardiac cell sheets,” Biomaterials, vol. 32, no. 30, pp. 7355–7362, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. Haraguchi, T. Shimizu, M. Yamato, and T. Okano, “Regenerative therapies using cell sheet-based tissue engineering for cardiac disease,” Cardiology Research and Practice, vol. 2011, Article ID 845170, 8 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. Y. Haraguchi, T. Shimizu, M. Yamato, and T. Okano, “Concise review, cell therapy and tissue engineering for cardiovascular disease,” Stem Cells Translational Medicine, vol. 1, no. 2, pp. 136–141, 2012. View at Publisher · View at Google Scholar
  45. N. Yamada, T. Okano, H. Sakai et al., “Thermo-responsive polymeric surfaces; control of attachment and detachment of cultured cells,” Macromolecular Rapid Communications, vol. 11, pp. 571–576, 1990. View at Scopus
  46. T. Okano, N. Yamada, H. Sakai, and Y. Sakurai, “A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide),” Journal of Biomedical Materials Research, vol. 27, no. 10, pp. 1243–1251, 1993. View at Scopus
  47. N. Kawaguchi, M. Machida, K. Hatta, T. Nakanishi, and Y. Takagaki, “Cell shape and cardiosphere differentiation: a revelation by proteomic profiling,” Biochemical Research International. In press.
  48. R. E. Akins Jr., D. Rockwood, K. G. Robinson, D. Sandusky, J. Rabolt, and C. Pizarro, “Three-dimensional culture alters primary cardiac cell phenotype,” Tissue Engineering A, vol. 16, no. 2, pp. 629–641, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. T. J. Bartosh, J. H. Ylostalo, A. Mohammadipoor et al., “Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 31, pp. 13724–13729, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. N. Kawaguchi, “Adult cardiac-derived stem cells: differentiation and survival regulators,” Vitamins and Hormones, vol. 87, pp. 111–125, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. N. Kawaguchi, “Stem cells for cardiac regeneration and possible roles of the transforming growth factor-β,” BioMolecular Concepts, vol. 3, pp. 99–106, 2012.
  52. N. Kawaguchi, E. Hayama, Y. Furutani, and T. Nakanishi, “Prospective in vitro disease models of channelpathies and cardiomyopathies,” Stem Cells International, vol. 2012, Article ID 439219, 10 pages, 2012. View at Publisher · View at Google Scholar
  53. I. Itzhaki, L. Maizels, I. Huber et al., “Modelling the long QT syndrome with induced pluripotent stem cells,” Nature, vol. 471, no. 7337, pp. 225–230, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. D. Malan, S. Friedrichs, B. K. Fleischmann, and P. Sasse, “Cardiomyocytes obtained from induced pluripotent stem cells with long-QT syndrome 3 recapitulate typical disease-specific features in vitro,” Circulation Research, vol. 109, no. 8, pp. 841–847, 2011. View at Publisher · View at Google Scholar · View at Scopus