About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 897232, 12 pages
http://dx.doi.org/10.1155/2013/897232
Research Article

Interplay of Biomechanical, Energetic, Coordinative, and Muscular Factors in a 200 m Front Crawl Swim

1Centre of Research, Education, Innovation and Intervention in Sport, Faculty of Sport, University of Porto, Rua Dr. Plácido Costa 91, 4200-450 Porto, Portugal
2Higher Education Institute of Maia (ISMAI), Avenida Carlos Oliveira Campos, 4475-690 Maia, Portugal
3Center for Research and Education in Special Environments, Department of Physiology and Biophysics, University at Buffalo, 3435 Main Street, Buffalo, NY 14214, USA
4Porto Biomechanics Laboratory, University of Porto, Rua Dr. Plácido Costa 91, 4200-450 Porto, Portugal

Received 9 July 2012; Accepted 5 February 2013

Academic Editor: Francisco Miró

Copyright © 2013 Pedro Figueiredo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This study aimed to determine the relative contribution of selected biomechanical, energetic, coordinative, and muscular factors for the 200 m front crawl and each of its four laps. Ten swimmers performed a 200 m front crawl swim, as well as 50, 100, and 150 m at the 200 m pace. Biomechanical, energetic, coordinative, and muscular factors were assessed during the 200 m swim. Multiple linear regression analysis was used to identify the weight of the factors to the performance. For each lap, the contributions to the 200 m performance were 17.6, 21.1, 18.4, and 7.6% for stroke length, 16.1, 18.7, 32.1, and 3.2% for stroke rate, 11.2, 13.2, 6.8, and 5.7% for intracycle velocity variation in x, 9.7, 7.5, 1.3, and 5.4% for intracycle velocity variation in y, 17.8, 10.5, 2.0, and 6.4% for propelling efficiency, 4.5, 5.8, 10.9, and 23.7% for total energy expenditure, 10.1, 5.1, 8.3, and 23.7% for interarm coordination, 9.0, 6.2, 8.5, and 5.5% for muscular activity amplitude, and 3.9, 11.9, 11.8, and 18.7% for muscular frequency). The relative contribution of the factors was closely related to the task constraints, especially fatigue, as the major changes occurred from the first to the last lap.