About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 901821, 14 pages
http://dx.doi.org/10.1155/2013/901821
Research Article

Isolation, Characterization, and Transduction of Endometrial Decidual Tissue Multipotent Mesenchymal Stromal/Stem Cells from Menstrual Blood

1Division of Oncology, Department of Medical and Surgical Sciences of Children & Adults, University Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41100 Modena, Italy
2Department of Internal Medicine and Oncology, University of Bari Aldo Moro, Bari, Italy
3Unit of Plastic Surgery, Department of Medical and Surgical Sciences of Children & Adults, University Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41100 Modena, Italy
4Division of Pediatric Oncology, Hematology and Marrow Transplantation, Department of Medical and Surgical Sciences of Children & Adults, University Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41100 Modena, Italy
5Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA

Received 2 November 2012; Revised 22 January 2013; Accepted 28 January 2013

Academic Editor: Thomas Skutella

Copyright © 2013 Filippo Rossignoli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Campioni and F. Lanza, “Cellule mesenchimali stromali: caratterizzazione immunofenotipica e funzionale,” Lettere GIC, vol. 20, pp. 13–19, 2011.
  2. W. Wagner, F. Wein, A. Seckinger et al., “Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood,” Experimental Hematology, vol. 33, no. 11, pp. 1402–1416, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. H. M. Lazarus, S. E. Haynesworth, S. L. Gerson, N. S. Rosenthal, and A. I. Caplan, “Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use,” Bone Marrow Transplantation, vol. 16, no. 4, pp. 557–564, 1995. View at Scopus
  4. L. M. Ball, M. E. Bernardo, H. Roelofs et al., “Cotransplantation of ex vivo-expanded mesenchymal stem cells accelerates lymphocyte recovery and may reduce the risk of graft failure in haploidentical hematopoietic stem-cell transplantation,” Blood, vol. 110, no. 7, pp. 2764–2767, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. E. M. Horwitz and M. Dominici, “How do mesenchymal stromal cells exert their therapeutic benefit?” Cytotherapy, vol. 10, no. 8, pp. 771–774, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Y. Khakoo, S. Pati, S. A. Anderson et al., “Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi's sarcoma,” The Journal of Experimental Medicine, vol. 203, no. 5, pp. 1235–1247, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Grisendi, R. Bussolari, L. Cafarelli et al., “Adipose-derived mesenchymal stem cells as stable source of tumor necrosis factor-related apoptosis-inducing ligand delivery for cancer therapy,” Cancer Research, vol. 70, no. 9, pp. 3718–3729, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. R. M. Dwyer, S. Khan, F. P. Barry, T. O'Brien, and M. J. Kerin, “Advances in mesenchymal stem cell-mediated gene therapy for cancer,” Stem Cell Research & Therapy, vol. 1, no. 3, article 25, 2010. View at Publisher · View at Google Scholar
  9. S. Kidd, L. Caldwell, M. Dietrich et al., “Mesenchymal stromal cells alone or expressing interferon-β suppress pancreatic tumors in vivo, an effect countered by anti-inflammatory treatment,” Cytotherapy, vol. 12, no. 5, pp. 615–625, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Chamberlain, J. Fox, B. Ashton, and J. Middleton, “Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing,” Stem Cells, vol. 25, no. 11, pp. 2739–2749, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Hass, C. Kasper, S. Bohm, and R. Jacobs, “Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC,” Cell Communication and Signaling, vol. 9, article 12, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. R. W. S. Chan, K. E. Schwab, and C. E. Gargett, “Clonogenicity of human endometrial epithelial and stromal cells,” Biology of Reproduction, vol. 70, no. 6, pp. 1738–1750, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. C. E. Gargett and H. Masuda, “Adult stem cells in the endometrium,” Molecular Human Reproduction, vol. 16, no. 11, Article ID gaq061, pp. 818–834, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. C. E. Gargett, K. E. Schwab, R. M. Zillwood, H. P. T. Nguyen, and D. Wu, “Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endometrium,” Biology of Reproduction, vol. 80, no. 6, pp. 1136–1145, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. A. N. Patel, E. Park, M. Kuzman, F. Benetti, F. J. Silva, and J. G. Allickson, “Multipotent menstrual blood stromal stem cells: isolation, characterization, and differentiation,” Cell Transplantation, vol. 17, no. 3, pp. 303–311, 2008. View at Scopus
  16. R. A. Musina, A. V. Belyavski, O. V. Tarusova, E. V. Solovyova, and G. T. Sukhikh, “Endometrial mesenchymal stem cells isolated from the menstrual blood,” Bulletin of Experimental Biology and Medicine, vol. 145, no. 4, pp. 539–543, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. N. D'Souza, J. S. Burns, G. Grisendi et al., “MSC and tumors: homing, differentiation and secretion influence the therapeutic potential,” Advances in Biochemical Engineering/Biotechnology, 2012. View at Publisher · View at Google Scholar
  18. H. Castro-Malaspina, R. E. Gay, G. Resnick, et al., “Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny,” Blood, vol. 56, no. 2, pp. 289–301, 1980. View at Scopus
  19. G. P. Dimri, X. Lee, G. Basile et al., “A biomarker that identifies senescent human cells in culture and in aging skin in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 20, pp. 9363–9367, 1995. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Grisendi, C. Annerén, L. Cafarelli et al., “GMP-manufactured density gradient media for optimized mesenchymal stromal/stem cell isolation and expansion,” Cytotherapy, vol. 12, no. 4, pp. 466–477, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. J. C. Marx, J. A. Allay, D. A. Persons et al., “High-efficiency transduction and long-term gene expression with a murine stem cell retroviral vector encoding the green fluorescent protein in human marrow stromal cells,” Human Gene Therapy, vol. 10, no. 7, pp. 1163–1173, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Dominici, K. Le Blanc, I. Mueller et al., “Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement,” Cytotherapy, vol. 8, no. 4, pp. 315–317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Du and H. S. Taylor, “Contribution of bone marrow-derived stem cells to endometrium and endometriosis,” Stem Cells, vol. 25, no. 8, pp. 2082–2086, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. K. E. Schwab and C. E. Gargett, “Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium,” Human Reproduction, vol. 22, no. 11, pp. 2903–2911, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Bieback, A. Hecker, T. Schlechter et al., “Replicative aging and differentiation potential of human adipose tissue-derived mesenchymal stromal cells expanded in pooled human or fetal bovine serum,” Cytotherapy, vol. 14, pp. 570–583, 2012.
  26. R. Dimitrov, T. Timeva, D. Kyurkchiev et al., “Characterization of clonogenic stromal cells isolated from human endometrium,” Reproduction, vol. 135, no. 4, pp. 551–558, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. C. V. Borlongan, Y. Kaneko, M. Maki et al., “Menstrual blood cells display stem cell-like phenotypic markers and exert neuroprotection following transplantation in experimental stroke,” Stem Cells and Development, vol. 19, no. 4, pp. 439–451, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. X. Meng, T. E. Ichim, J. Zhong et al., “Endometrial regenerative cells: a novel stem cell population,” Journal of Translational Medicine, vol. 5 article 57, 2007.
  29. L. Peng, Z. Jia, X. Yin et al., “Comparative analysis of mesenchymal stem cells from bone marrow, cartilage, and adipose tissue,” Stem Cells and Development, vol. 17, no. 4, pp. 761–773, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. B. C. Perry, D. Zhou, X. Wu et al., “Collection, cryopreservation, and characterization of human dental pulp-derived mesenchymal stem cells for banking and clinical use,” Tissue Engineering C, vol. 14, no. 2, pp. 149–156, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. L. L. Lu, Y. J. Liu, S. G. Yang et al., “Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials,” Haematologica, vol. 91, no. 8, pp. 1017–1028, 2006. View at Scopus
  32. S. Kern, H. Eichler, J. Stoeve, H. Klüter, and K. Bieback, “Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue,” Stem Cells, vol. 24, no. 5, pp. 1294–1301, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. N. Hida, N. Nishiyama, S. Miyoshi et al., “Novel cardiac precursor-like cells from human menstrual blood-derived mesenchymal cells,” Stem Cells, vol. 26, no. 7, pp. 1695–1704, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Zola, B. Swart, I. Nicholson, and E. Voss, Eds., Leukocyte and Stromal Cell Molecules—The CD Markers, Wiley-Liss, 2007.
  35. V. L. Battula, S. Treml, P. M. Bareiss et al., “Isolation of functionally distinct mesenchymal stem cell subsets using antibodies against CD56, CD271, and mesenchymal stem cell antigen-1,” Haematologica, vol. 94, no. 2, pp. 173–184, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. H. J. Bühring, S. Treml, F. Cerabona, P. De Zwart, L. Kanz, and M. Sobiesiak, “Phenotypic characterization of distinct human bone marrow-derived MSC subsets,” Annals of the New York Academy of Sciences, vol. 1176, pp. 124–134, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. E. J. Gang, D. Bosnakovski, C. A. Figueiredo, J. W. Visser, and R. C. R. Perlingeiro, “SSEA-4 identifies mesenchymal stem cells from bone marrow,” Blood, vol. 109, no. 4, pp. 1743–1751, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. C. H. Cui, T. Uyama, K. Miyado et al., “Menstrual blood-derived cells confer human dystrophin expression in the murine model of duchenne muscular dystrophy via cell fusion and myogenic transdifferentiation,” Molecular Biology of the Cell, vol. 18, no. 5, pp. 1586–1594, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. M. P. Murphy, H. Wang, A. N. Patel et al., “Allogeneic endometrial regenerative cells: an "Off the shelf solution" for critical limb ischemia?” Journal of Translational Medicine, vol. 6, article 45, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. Z. Zhong, A. N. Patel, T. E. Ichim et al., “Feasibility investigation of allogeneic endometrial regenerative cells,” Journal of Translational Medicine, vol. 7, article 15, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  42. R. C. Schugar, S. M. Chirieleison, K. E. Wescoe et al., “High harvest yield, high expansion, and phenotype stability of CD146 mesenchymal stromal cells from whole primitive human umbilical cord tissue,” Journal of Biomedicine and Biotechnology, vol. 2009, Article ID 789526, 11 pages, 2009. View at Publisher · View at Google Scholar
  43. D. T. Covas, R. A. Panepucci, A. M. Fontes et al., “Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts,” Experimental Hematology, vol. 36, no. 5, pp. 642–654, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. D. Campioni, S. Moretti, L. Ferrari, M. Punturieri, G. L. Castoldi, and F. Lanza, “Immunophenotypic heterogeneity of bone marrow-derived mesenchymal stromal cells from patients with hematologic disorders: correlation with bone marrow microenvironment,” Haematologica, vol. 91, no. 3, pp. 364–368, 2006. View at Scopus
  45. I. Kassis, L. Zangi, R. Rivkin et al., “Isolation of mesenchymal stem cells from G-CSF-mobilized human peripheral blood using fibrin microbeads,” Bone Marrow Transplantation, vol. 37, no. 10, pp. 967–976, 2006. View at Publisher · View at Google Scholar · View at Scopus