About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 904769, 12 pages
http://dx.doi.org/10.1155/2013/904769
Research Article

ScMT2-1-3, a Metallothionein Gene of Sugarcane, Plays an Important Role in the Regulation of Heavy Metal Tolerance/Accumulation

Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China

Received 10 February 2013; Revised 3 May 2013; Accepted 8 May 2013

Academic Editor: Sudhir Sopory

Copyright © 2013 Jinlong Guo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. G. Gu, Q. X. Zhou, and X. Wang, “Reused path of heavy metal pollution in soils and its research advance,” Journal of Basic Science and Engineering, vol. 11, no. 2, pp. 143–151, 2003.
  2. R. L. Chaney, “Plant uptake of inorganic waste constituents-,” in Land Treatment of Hazardous Wastes, J. F. Parr, P. B. Marsh, and J. M. Kla, Eds., pp. 50–76, Noyes Data Corp., Park Ridge, NJ, USA.
  3. I. Raskin, R. D. Smith, and D. E. Salt, “Phytoremediation of metals: using plants to remove pollutants from the environment,” Current Opinion in Biotechnology, vol. 8, no. 2, pp. 221–226, 1997. View at Publisher · View at Google Scholar · View at Scopus
  4. P. E. Flathman and G. R. Lanza, “Phytoremediation: current views on an emerging green technology,” Journal of Soil Contamination, vol. 7, no. 4, pp. 415–432, 1998.
  5. S. D. Cunningham and D. W. Ow, “Promises and prospects of phytoremediation,” Plant Physiology, vol. 110, no. 3, pp. 715–719, 1996.
  6. N. Verbruggen, C. Hermans, and H. Schat, “Molecular mechanisms of metal hyperaccumulation in plants,” New Phytologist, vol. 181, no. 4, pp. 759–776, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. M. A. Hossain, P. Piyatida, J. A. Teixeira da Silva, and M. Fujita, “Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation,” Journal of Botany, vol. 2012, Article ID 872875, 37 pages, 2012. View at Publisher · View at Google Scholar
  8. M. G. Wu, Y. Q. Lin, and H. Zhang, “Research status and prospect on industrial standard of sugarcane in China,” Subtropical Agriculture Research, vol. 6, no. 3, pp. 209–211, 2010.
  9. M. L. Sereno, R. S. Almeida, D. S. Nishimura, and A. Figueira, “Response of sugarcane to increasing concentrations of copper and cadmium and expression of metallothionein genes,” Journal of Plant Physiology, vol. 164, no. 11, pp. 1499–1515, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Cobbett and P. Goldsbrough, “Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis,” Annual Review of Plant Biology, vol. 53, pp. 159–182, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. N. H. Roosens, R. Leplae, C. Bernard, and N. Verbruggen, “Variations in plant metallothioneins: the heavy metal hyperaccumulator Thlaspi caerulescens as a study case,” Planta, vol. 222, no. 4, pp. 716–729, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. I. D. Rodríguez-Llorente, “Epxression of the seed-specific metallothionein mt4a in plant vegetative tissues increases Cu and Zn tolerance,” Plant Science, vol. 178, no. 3, pp. 327–332, 2010.
  13. G. Y. Huang and Y. S. Wang, “Expression and characterization analysis of type 2 metallothionein from grey mangrove species (Avicennia marina) in response to metal stress,” Aquatic Toxicology, vol. 99, no. 1, pp. 86–92, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. J. L. Guo, Y. X. Que, J. X. Liu, Y. F. Zheng, R. K. Chen, and L. P. Xu, “Construction of full-length cDNA library for sugarcane stem by optimized oligo-capping,” Chinese Journal of Troical Crops, vol. 30, no. 5, pp. 672–676, 2009.
  15. K. Gupta, P. K. Agarwal, M. K. Reddy, and B. Jha, “SbDREB2A, an A-2 type DREB transcription factor from extreme halophyte Salicornia brachiata confers abiotic stress tolerance in Escherichia coli,” Plant Cell Reports, vol. 29, no. 10, pp. 1131–1137, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. C. M. van der Weele, W. G. Spollen, R. E. Sharp, and T. I. Baskin, “Growth of Arabidopsis thaliana seedlings under water deficit studied by control of water potential in nutrient-agar media,” Journal of Experimental Botany, vol. 51, no. 350, pp. 1555–1562, 2000. View at Scopus
  17. L. J. Zhang, L. J. Huan, Y. Y. Ruan, and Y. X. Guan, “Application of polyethylene glycol in the study of plant osmotic stress physiology,” Plant Physiology Communications, vol. 40, pp. 361–364, 2004.
  18. H. M. Iskandar, R. S. Simpson, R. E. Casu, G. D. Bonnett, D. J. Maclean, and J. M. Manners, “Comparison of reference genes for quantitative real-time polymerase chain reaction analysis of gene expression in sugarcane,” Plant Molecular Biology Reporter, vol. 22, no. 4, pp. 325–337, 2004. View at Scopus
  19. Y. X. Que, L. P. Xu, J. S. Xu, J. S. Zhang, M. Q. Zhang, and R. K. Chen, “Selection of control genes in real-time qPCR analysis of gene expression in sugarcane,” Chinse Journal of Tropical Crops, vol. 30, no. 3, pp. 274–278, 2009.
  20. K. J. Livak and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method,” Methods, vol. 25, no. 4, pp. 402–408, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Bartolf, E. Brennan, and C. A. Price, “Partial characterization of a cadmium-binding protein from the roots of cadmium-treated tomato,” Plant Physiology, vol. 66, no. 3, pp. 438–441, 1980. View at Scopus
  22. J. Zhou and P. B. Goldsbrough, “Structure, organization and expression of the metallothionein gene family in Arabidopsis,” Molecular and General Genetics, vol. 248, no. 3, pp. 318–328, 1995. View at Publisher · View at Google Scholar · View at Scopus
  23. H. L. Wong, T. Sakamoto, T. Kawasaki, K. Umemura, and K. Shimamoto, “Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice,” Plant Physiology, vol. 135, no. 3, pp. 1447–1456, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Figueira, E. A. Kido, and R. S. Almeida, “Identifying sugarcane expressed sequences associated with nutrient transporters and peptide metal chelators,” Genetics and Molecular Biology, vol. 24, pp. 207–220, 2001.
  25. W. J. Guo, W. Bundithya, and P. B. Goldsbrough, “Characterization of the Arabidopsis metallothionein gene family: tissue-specific expression and induction during senescence and in response to copper,” New Phytologist, vol. 159, no. 2, pp. 369–381, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. W. J. Guo, M. Meetam, and P. B. Goldsbrough, “Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance,” Plant Physiology, vol. 146, no. 4, pp. 1697–1706, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. H. M. Hsieh, W. K. Liu, A. Chang, and P. C. Huang, “RNA expression patterns of a type 2 metallothionein-like gene from rice,” Plant Molecular Biology, vol. 32, no. 3, pp. 525–529, 1996.
  28. J. Zhu, Q. Zhang, R. Wu, and Z. Zhang, “HbMT2, an ethephon-induced metallothionein gene from Hevea brasiliensis responds to H2O2 stress,” Plant Physiology and Biochemistry, vol. 48, no. 8, pp. 710–715, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Murphy, J. Zhou, P. B. Goldsbrough, and L. Taiz, “Purification and immunological identification of metallothioneins 1 and 2 from Arabidopsk thaliana,” Plant Physiology, vol. 113, no. 4, pp. 1293–1301, 1997.
  30. K. Bilecen, U. H. Ozturk, A. D. Duru et al., “Triticum durum metallothionein: isolation of the gene and structural characterization of the protein using solution scattering and molecular modeling,” Journal of Biological Chemistry, vol. 280, no. 14, pp. 13701–13711, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. W. H. Tang, J. L. Zhang, Z. Y. Wang, and M. M. Hong, “The cause of deviation made in determining the molecular weight of His-tag fusion proteins by SDS-PAGE,” Acta Phytophysio-Logica Sinica, vol. 26, no. 1, pp. 64–68, 2000.
  32. A. M. Tommey, J. Shi, W. P. Lindsay, P. E. Urwin, and N. J. Robinson, “Expression of the pea gene PsMT(A) in E. coli: metal binding properties of the expressed protein,” FEBS Letters, vol. 292, no. 1-2, pp. 48–52, 1991. View at Publisher · View at Google Scholar · View at Scopus
  33. K. M. Evans, J. A. Gatehouse, W. P. Lindsay, J. Shi, A. M. Tommey, and N. J. Robinson, “Expression of the pea metallothionein-like gene PsMTA in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: implications for PsMTA function,” Plant Molecular Biology, vol. 20, no. 6, pp. 1019–1028, 1992. View at Publisher · View at Google Scholar · View at Scopus
  34. M. García-Hernández, A. Murphy, and L. Taiz, “Metallothioneins 1 and 2 have distinct but overlapping expression patterns in Arabidopsis,” Plant Physiology, vol. 118, no. 2, pp. 387–397, 1998.
  35. Y. Li and M. A. Trush, “DNA damage resulting from the oxidation of hydroquinone by copper: role for a Cu(II)/Cu(I)) redox cycle and reactive oxygen generation,” Carcinogenesis, vol. 14, no. 7, pp. 1303–1311, 1993. View at Scopus
  36. Y. Li and M. A. Trush, “Oxidation of hydroquinone by copper: chemical mechanism and biological effects,” Archives of Biochemistry and Biophysics, vol. 300, no. 1, pp. 346–355, 1993. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Rivetta, N. Negrini, and M. Cocucci, “Involvement of Ca2+-calmodulin in Cd2+ toxicity during the early phases of radish (Raphanus sativus L.) seed germination,” Plant, Cell and Environment, vol. 20, no. 5, pp. 600–608, 1997. View at Scopus