About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 908348, 7 pages
http://dx.doi.org/10.1155/2013/908348
Review Article

Anti-Inflammatory and Antiapoptotic Responses to Infection: A Common Denominator of Human and Bovine Macrophages Infected with Mycobacterium avium Subsp. paratuberculosis

Department of Animal Health, Basque Institute for Agricultural Research and Development, NEIKER-Tecnalia, Technological Park of Bizkaia, 48160 Derio, Bizkaia, Spain

Received 27 September 2012; Accepted 26 December 2012

Academic Editor: Reinaldo B. Oriá

Copyright © 2013 Naiara Abendaño et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. L. Ott, S. J. Wells, and B. A. Wagner, “Herd-level economic losses associated with Johne's disease on US dairy operations,” Preventive Veterinary Medicine, vol. 40, no. 3-4, pp. 179–192, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. W. Chamberlin, D. Y. Graham, K. Hulten et al., “Review article: Mycobacterium avium subsp. paratuberculosis as one cause of Crohn's disease,” Alimentary Pharmacology and Therapeutics, vol. 15, no. 3, pp. 337–346, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Juste, “Slow infection control by vaccination,” Veterinary Immunology and Immunopathology, vol. 148, pp. 190–196, 2012.
  4. R. Juste, “Current strategies for eradication of paratuberculosis and issues in public health,” Veterinary Immunology and Immunopathology, vol. 148, pp. 16–22, 2012.
  5. S. A. Naser, I. Shafran, D. Schwartz, F. El-Zaatari, and J. Biggerstaff, “In situ identification of mycobacteria in Crohn's disease patient tissue using confocal scanning laser microscopy,” Molecular and Cellular Probes, vol. 16, no. 1, pp. 41–48, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. S. A. Naser, G. Ghobrial, C. Romero, and J. F. Valentine, “Culture of Mycobacterium avium subspecies paratuberculosis from the blood of patients with Crohn's disease,” The Lancet, vol. 364, no. 9439, pp. 1039–1044, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. R. B. Gearry, J. M. Aitken, R. L. Roberts, S. Ismail, J. Keenan, and M. L. Barclay, “Gastrointestinal: Mycobacterium  avium  paratuberculosis and Crohn's disease,” Journal of Gastroenterology and Hepatology, vol. 20, no. 12, p. 1943, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. A. M. Scanu, T. J. Bull, S. Cannas et al., “Mycobacterium avium subspecies paratuberculosis infection in cases of irritable bowel syndrome and comparison with Crohn's disease and Johne's disease: common neural and immune pathogenicities,” Journal of Clinical Microbiology, vol. 45, no. 12, pp. 3883–3890, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. R. A. Juste, N. Elguezabal, A. Pavón et al., “Association between Mycobacterium avium subsp. paratuberculosis DNA in blood and cellular and humoral immune response in inflammatory bowel disease patients and controls,” International Journal of Infectious Diseases, vol. 13, no. 2, pp. 247–254, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. R. A. Juste, N. Elguezabal, J. M. Garrido, et al., “On the prevalence of M. avium subspecies paratuberculosis DNA in the blood of healthy individuals and patients with inflammatory bowel disease,” PLoS ONE, vol. 3, article e2537, 2008.
  11. I. Abubakar, D. Myhill, S. H. Aliyu, and P. R. Hunter, “Detection of Mycobacterium avium subspecies paratubercubsis from patients with Crohn's disease using nucleic acid-based techniques: a systematic review and meta-analysis,” Inflammatory Bowel Diseases, vol. 14, no. 3, pp. 401–410, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Feller, K. Huwiler, R. Stephan et al., “Mycobacterium avium subspecies paratuberculosis and Crohn's disease: a systematic review and meta-analysis,” Lancet Infectious Diseases, vol. 7, no. 9, pp. 607–613, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. E. S. Pierce, “Possible transmission of Mycobacterium avium subspecies paratuberculosis through potable water: lessons from an urban cluster of Crohn's disease,” Gut Pathogens, vol. 23, p. 17, 2009.
  14. R. J. Chiodini and J. Hermon-Taylor, “The thermal resistance of Mycobacterium paratuberculosis in raw milk under conditions simulating pasteurization,” Journal of Veterinary Diagnostic Investigation, vol. 37, pp. 1645–1648, 1993. View at Scopus
  15. M. Alonso-Hearn, E. Molina, M. Geijo et al., “Isolation of Mycobacterium avium subsp. paratuberculosis from muscle tissue of naturally infected cattle,” Foodborne Pathogens and Disease, vol. 6, no. 4, pp. 513–518, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. E. Momotani, D. L. Whipple, A. B. Thiermann, and N. F. Cheville, “Role of M cells and macrophages in the entrance of Mycobacterium paratuberculosis into domes of ileal Peyer's patches in calves,” Veterinary Pathology, vol. 25, no. 2, pp. 131–137, 1988. View at Scopus
  17. N. B. Harris and R. G. Barletta, “Mycobacterium avium subsp. paratuberculosis in veterinary medicine,” Clinical Microbiology Reviews, vol. 14, no. 3, pp. 489–512, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. L. E. Bermudez, M. Petrofsky, S. Sommer, and R. G. Barletta, “Peyer's patch-deficient mice demonstrate that Mycobacterium avium subsp. paratuberculosis translocates across the mucosal barrier via both M cells and enterocytes but has inefficient dissemination,” Infection and Immunity, vol. 78, no. 8, pp. 3570–3577, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Alonso-Hearn, D. Patel, L. Danelishvili, L. Meunier-Goddik, and L. E. Bermudez, “The Mycobacterium avium subsp. paratuberculosis MAP3464 gene encodes an oxidoreductase involved in invasion of bovine epithelial cells through the activation of host cell Cdc42,” Infection and Immunity, vol. 76, no. 1, pp. 170–178, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Alonso, K. Pethe, D. G. Russell, and G. E. Purdy, “Lysosomal killing of Mycobacterium mediated by ubiquitin-derived peptides is enhanced by autophagy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 14, pp. 6031–6036, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. M. T. Rowe and I. R. Grant, “Mycobacterium avium ssp. paratuberculosis and its potential survival tactics,” Letters in Applied Microbiology, vol. 42, no. 4, pp. 305–311, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. S. R. Woo, J. A. Heintz, R. Albrecht, R. G. Barletta, and C. J. Czuprynski, “Life and death in bovine monocytes: the fate of Mycobacterium avium subsp. paratuberculosis,” Microbial Pathogenesis, vol. 43, no. 2, pp. 106–113, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Y. Zhao, C. J. Czuprynski, and M. T. Collins, “Intracellular fate of Mycobacterium avium subspecies paratuberculosis in monocytes from normal and infected, interferon-responsive cows as determined by a radiometric method,” Canadian Journal of Veterinary Research, vol. 63, no. 1, pp. 56–61, 1999. View at Scopus
  24. M. P. Kuehnel, R. Goethe, A. Habermann et al., “Characterization of the intracellular survival of Mycobacterium avium ssp. paratuberculosis: phagosomal pH and fusogenicity in J774 macrophages compared with other mycobacteria,” Cellular Microbiology, vol. 3, no. 8, pp. 551–566, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. J. P. Bannantine and J. R. Stabel, “Killing of Mycobacterium avium subspecies paratuberculosis within macrophages,” BMC Microbiology, vol. 2, no. 1, p. 2, 2002. View at Scopus
  26. J. Hostetter, E. Steadham, J. Haynes, T. Bailey, and N. Cheville, “Phagosomal maturation and intracellular survival of Mycobacterium avium subspecies paratuberculosis in J774 cells,” Comparative Immunology, Microbiology and Infectious Diseases, vol. 26, no. 4, pp. 269–283, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Sommer, C. B. Pudrith, C. J. Colvin, and P. M. Coussens, “Mycobacterium avium subspecies paratuberculosis suppresses expression of IL-12p40 and iNOS genes induced by signalling through CD40 in bovine monocyte-derived macrophages,” Veterinary Immunology and Immunopathology, vol. 128, no. 1–3, pp. 44–52, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. P. M. Coussens, “Model for immune responses to Mycobacterium avium subspecies paratuberculosis in cattle,” Infection and Immunity, vol. 72, no. 6, pp. 3089–3096, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. M. S. Khalifeh and J. R. Stabel, “Effects of gamma interferon, interleukin-10, and transforming growth factor β on the survival of Mycobacterium avium subsp. paratuberculosis in monocyte-derived macrophages from naturally infected cattle,” Infection and Immunity, vol. 72, no. 4, pp. 1974–1982, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. D. J. Weiss, O. A. Evanson, C. de Souza, and M. S. Abrahamsen, “A critical role of interleukin-10 in the response of bovine macrophages to infection by Mycobacterium avium subsp paratuberculosis,” American Journal of Veterinary Research, vol. 66, no. 4, pp. 721–726, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. D. E. de Almeida, C. J. Colvin, and P. M. Coussens, “Antigen-specific regulatory T cells in bovine paratuberculosis,” Veterinary Immunology and Immunopathology, vol. 125, no. 3-4, pp. 234–245, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. R. J. Chiodini, H. J. Van Kruiningen, and R. S. Merkal, “Ruminant paratuberculosis (Johne's disease): the current status and future prospects,” The Cornell Veterinarian, vol. 74, no. 3, pp. 218–262, 1984. View at Scopus
  33. D. J. Weiss, O. A. Evanson, A. Moritz, M. Q. Deng, and M. S. Abrahamsen, “Differential responses of bovine macrophages to Mycobacterium avium subsp. paratuberculosis and Mycobacterium avium subsp. avium,” Infection and Immunity, vol. 70, no. 10, pp. 5556–5561, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. H. K. Janagama, K. I. Jeong, V. Kapur, P. Coussens, and S. Sreevatsan, “Cytokine responses of bovine macrophages to diverse clinical Mycobacterium avium subspecies paratuberculosis strains,” BMC Microbiology, vol. 6, p. 10, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. D. J. Weiss, O. A. Evanson, M. Deng, and M. S. Abrahamsen, “Gene expression and antimicrobial activity of bovine macrophages in response to Mycobacterium avium subsp. paratuberculosis,” Veterinary Pathology, vol. 41, no. 4, pp. 326–337, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. J. T. Murphy, S. Sommer, E. A. Kabara et al., “Gene expression profiling of monocyte-derived macrophages following infection with Mycobacterium avium subspecies avium and Mycobacterium avium subspecies paratuberculosis,” Physiological Genomics, vol. 28, no. 1, pp. 67–75, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. P. M. Coussens, C. J. Colvin, G. J. M. Rosa, J. Perez Laspiur, and M. D. Elftman, “Evidence for a novel gene expression program in peripheral blood mononuclear cells from Mycobacterium avium subsp. paratuberculosis-infected cattle,” Infection and Immunity, vol. 71, no. 11, pp. 6487–6498, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. E. Kabara, C. C. Kloss, M. Wilson et al., “A large-scale study of differential gene expression in monocyte-derived macrophages infected with several strains of Mycobacterium avium subspecies paratuberculosis,” Briefings in Functional Genomics and Proteomics, vol. 9, no. 3, pp. 220–237, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. D. E. Machugh, M. Taraktsoglou, K. E. Killick et al., “Pan-genomic analysis of bovine monocyte-derived macrophage gene expression in response to in vitro infection with Mycobacterium avium subspecies paratuberculosis,” Veterinary Research, vol. 43, p. 25, 2012.
  40. N. Abendaño, I. A. Sevilla, J. M. Garrido, J. M. Prieto, R. A. Juste, and M. Alonso-Hearn, “Mycobacterium avium subspecies paratuberculosis isolates from sheep and goats show reduced persistence in bovine macrophages than cattle, bison, deer and wild boar strains regardless of genotype,” Veterinary Microbiology. In press.
  41. A. S. Motiwala, H. K. Janagama, M. L. Paustian et al., “Comparative transcriptional analysis of human macrophages exposed to animal and human isolates of Mycobacterium avium subspecies paratuberculosis with diverse genotypes,” Infection and Immunity, vol. 74, no. 11, pp. 6046–6056, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Sibartie, P. Scully, J. Keohane et al., “Mycobacterium avium subsp. paratuberculosis (MAP) as a modifying factor in Crohn's disease,” Inflammatory Bowel Diseases, vol. 16, no. 2, pp. 296–304, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. N. Campos, F. Magro, A. R. Castro et al., “Macrophages from IBD patients exhibit defective tumour necrosis factor-α secretion but otherwise normal or augmented pro-inflammatory responses to infection,” Immunobiology, vol. 216, no. 8, pp. 961–970, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. D. J. Weiss, O. A. Evanson, D. J. McClenahan, M. S. Abrahamsen, and B. K. Walcheck, “Regulation of expression of major histocompatibility antigens by bovine macrophages infected with Mycobacterium avium subsp. paratuberculosis or Mycobacterium avium subsp. avium,” Infection and Immunity, vol. 69, no. 2, pp. 1002–1008, 2001. View at Publisher · View at Google Scholar · View at Scopus
  45. I. Olsen, S. Tollefsen, C. Aagaard et al., “Isolation of Mycobacteriumavium subspecies paratuberculosis reactive CD4 T cells from intestinal biopsies of Crohn's disease patients,” PLoS ONE, vol. 22, p. 5641, 2009.