About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 916136, 8 pages
http://dx.doi.org/10.1155/2013/916136
Research Article

Isolation and Characterisation of Mesenchymal Stem Cells from Different Regions of the Human Umbilical Cord

1The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust & ISTM, Keele University, Oswestry, Shropshire SY10 7AG, UK
2Institute for Orthopaedics, The Robert Jones & Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry SY10 7AG, UK

Received 17 April 2013; Accepted 13 June 2013

Academic Editor: Steven Elder

Copyright © 2013 Claire Mennan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. T. Conconi, R. D. Liddo, M. Tommasini, C. Calore, and P. P. Parnigotto, “Phenotype and differentiation potential of stem populations obtained from various zones of human umbilical cord: an overview,” Open Tissue Engineering and Regenerative Medicine Journal, vol. 4, no. 1, pp. 6–20, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Cheng, L. Qiu, J. Ma et al., “Replicative senescence of human bone marrow and umbilical cord derived mesenchymal stem cells and their differentiation to adipocytes and osteoblasts,” Molecular Biology Reports, vol. 38, no. 8, pp. 5161–5168, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Campard, P. A. Lysy, M. Najimi, and E. M. Sokal, “Native umbilical cord matrix stem cells express hepatic markers and differentiate into hepatocyte-like cells,” Gastroenterology, vol. 134, no. 3, pp. 833–848, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. W. C. Pereira, I. Khushnooma, M. Madkaikar, and K. Ghosh, “Reproducible methodology for the isolation of mesenchymal stem cells from human umbilical cord and its potential for cardiomyocyte generation,” Journal of Tissue Engineering and Regenerative Medicine, vol. 2, no. 7, pp. 394–399, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. C.-Y. Fong, A. Subramanian, K. Gauthaman et al., “Human umbilical cord wharton's jelly stem cells undergo enhanced chondrogenic differentiation when grown on nanofibrous scaffolds and in a sequential two-stage culture medium environment,” Stem Cell Reviews and Reports, vol. 8, no. 1, pp. 195–209, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Deuse, M. Stubbendorff, K. Tang-Quan et al., “Immunogenicity and immunomodulatory properties of umbilical cord lining mesenchymal stem cells,” Cell Transplantation, vol. 20, no. 5, pp. 655–667, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Sarugaser, D. Lickorish, D. Baksh, M. M. Hosseini, and J. E. Davies, “Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors,” Stem Cells, vol. 23, no. 2, pp. 220–229, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. V. D. Roobrouck, F. Ulloa-Montoya, and C. M. Verfaillie, “Self-renewal and differentiation capacity of young and aged stem cells,” Experimental Cell Research, vol. 314, no. 9, pp. 1937–1944, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Stenderup, J. Justesen, C. Clausen, and M. Kassem, “Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells,” Bone, vol. 33, no. 6, pp. 919–926, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Baksh, R. Yao, and R. S. Tuan, “Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow,” Stem Cells, vol. 25, no. 6, pp. 1384–1392, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Chen, N. Zhang, T. Li et al., “Human umbilical cord Wharton's jelly stem cells: immune property genes assay and effect of transplantation on the immune cells of heart failure patients,” Cellular Immunology, vol. 276, pp. 83–90, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Gonzalez, L. Griparic, M. Umana et al., “An efficient approach to isolation and characterization of pre- and postnatal umbilical cord lining stem cells for clinical applications,” Cell Transplantation, vol. 19, no. 11, pp. 1439–1449, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Kadivar, S. Khatami, Y. Mortazavi, M. A. Shokrgozar, M. Taghikhani, and M. Soleimani, “In vitro cardiomyogenic potential of human umbilical vein-derived mesenchymal stem cells,” Biochemical and Biophysical Research Communications, vol. 340, no. 2, pp. 639–647, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. A. Romanov, V. A. Svintsitskaya, and V. N. Smirnov, “Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord,” Stem Cells, vol. 21, no. 1, pp. 105–110, 2003. View at Scopus
  15. J. Dalous, J. Larghero, and O. Baud, “Transplantation of umbilical cord-derived mesenchymal stem cells as a novel strategy to protect the central nervous system: technical aspects, preclinical studies, and clinical perspectives,” Pediatric Research, vol. 71, pp. 482–490, 2012.
  16. D. W. Jordan and P. Smith, Mathematical Techniques: An Introduction For the Engineering, Physical and Mathematical Sciences, Oxford University Press, Oxford, UK, 2nd edition, 2000.
  17. M. Dominici, K. Le Blanc, I. Mueller et al., “Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement,” Cytotherapy, vol. 8, no. 4, pp. 315–317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. N. Jaiswal, S. E. Haynesworth, A. I. Caplan, and S. P. Bruder, “Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro,” Journal of Cellular Biochemistry, vol. 64, pp. 295–312, 1997.
  19. C. K. Rebelatto, A. M. Aguiar, M. P. Moretão et al., “Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue,” Experimental Biology and Medicine, vol. 233, no. 7, pp. 901–913, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. C.-Y. Fong, L.-L. Chak, A. Biswas et al., “Human Wharton’s jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells,” Stem Cell Reviews and Reports, vol. 7, no. 1, pp. 1–16, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. S.-H. Koh, K. S. Kim, M. R. Choi et al., “Implantation of human umbilical cord-derived mesenchymal stem cells as a neuroprotective therapy for ischemic stroke in rats,” Brain Research, vol. 1229, pp. 233–248, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Secco, E. Zucconi, N. M. Vieira et al., “Multipotent stem cells from umbilical cord: cord is richer than blood!,” Stem Cells, vol. 26, no. 1, pp. 146–150, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. K. K. Hirschi and P. A. D'Amore, “Pericytes in the microvasculature,” Cardiovascular Research, vol. 32, no. 4, pp. 687–698, 1996. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Corselli, C.-W. Chen, M. Crisan, L. Lazzari, and B. Péault, “Perivascular ancestors of adult multipotent stem cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 6, pp. 1104–1109, 2010. View at Publisher · View at Google Scholar · View at Scopus