About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 916218, 10 pages
http://dx.doi.org/10.1155/2013/916218
Research Article

Synthesis and Antimicrobial Activity of Silver-Doped Hydroxyapatite Nanoparticles

1Department of Multifunctional Materials and Structures Laboratory, National Institute of Materials Physics, 105 Bis Atomistilor, P.O. Box MG 07, 077125 Magurele, Romania
2Faculty of Physics, University of Bucharest, 405 Atomistilor, CP MG-1, 077125 Magurele, Romania
3Microbiology Department, Faculty of Biology, University of Bucharest, Aleea Portocalelor 1-3, 60101 Bucharest, Romania
4EA 4592 Géoressources & Environnement, EGID, Universite Bordeaux, 1 Allée F. Daguin 18, 33607 Pessac Cedex, France

Received 22 September 2012; Revised 15 November 2012; Accepted 15 November 2012

Academic Editor: Abdelwahab Omri

Copyright © 2013 Carmen Steluta Ciobanu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. N. Moore, “Do nanoparticles present ecotoxicological risks for the health of the aquatic environment?” Environment International, vol. 32, no. 8, pp. 967–976, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Nel, T. Xia, L. Mädler, and N. Li, “Toxic potential of materials at the nanolevel,” Science, vol. 311, no. 5761, pp. 622–627, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. B. P. Barnett, A. Arepally, P. V. Karmarkar et al., “Magnetic resonance-guided, real-time targeted delivery and imaging of magnetocapsules immunoprotecting pancreatic islet cells,” Nature Medicine, vol. 13, no. 8, pp. 986–991, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Lens, “Use of fullerenes in cosmetics,” Recent Patents on Biotechnology, vol. 3, no. 2, pp. 118–123, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. W. Tungittiplakorn, L. W. Lion, C. Cohen, and J. Y. Kim, “Engineered polymeric nanoparticles for soil remediation,” Environmental Science and Technology, vol. 38, no. 5, pp. 1605–1610, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. J. A. Dahl, B. L. S. Maddux, and J. E. Hutchison, “Toward greener nanosynthesis,” Chemical Reviews, vol. 107, no. 6, pp. 2228–2269, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. J. E. Hutchison, “Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology,” ACS Nano, vol. 2, no. 3, pp. 395–402, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Jaiswal, B. Duffy, A. K. Jaiswal, N. Stobie, and P. McHale, “Enhancement of the antibacterial properties of silver nanoparticles using β-cyclodextrin as a capping agent,” International Journal of Antimicrobial Agents, vol. 36, no. 3, pp. 280–283, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. D. C. Tien, K. H. Tseng, C. Y. Liao, and T. T. Tsung, “Colloidal silver fabrication using the spark discharge system and its antimicrobial effect on Staphylococcus aureus,” Medical Engineering and Physics, vol. 30, no. 8, pp. 948–952, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Martinez-Gutierrez, P. L. Olive, A. Banuelos et al., “Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles,” Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 6, no. 5, pp. 681–688, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. R. R. Khaydarov, R. A. Khaydarov, Y. Estrin, S. E. Evgrafova, T. Scheper, and C. Endres, Nanoparticles Risk and Benefits, Springer, Dordrecht, The Netherlands, 2008.
  12. T. Hamouda and J. R. Baker, “Antimicrobial mechanism of action of surfactant lipid preparations in enteric gram-negative bacilli,” Journal of Applied Microbiology, vol. 89, no. 3, pp. 397–403, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. V. K. Sharma, R. A. Yngard, and Y. Lin, “Silver nanoparticles: green synthesis and their antimicrobial activities,” Advances in Colloid and Interface Science, vol. 145, no. 1-2, pp. 83–96, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Jiang, S. Manolache, A. C. L. Wong, and F. S. Denes, “Plasma-enhanced deposition of silver nanoparticles onto polymer and metal surfaces for the generation of antimicrobial characteristics,” Journal of Applied Polymer Science, vol. 93, no. 3, pp. 1411–1422, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. Q. L. Feng, J. Wu, G. Q. Chen, F. Z. Cui, T. N. Kim, and J. O. Kim, “A mechanistic study of the antibacterial effect of silver ions on E. coli and Staphylococcus aureus,” J Biomed Mater Res, vol. 52, pp. 662–668, 2000.
  16. S. K. Rastogi, V. J. Rutledge, C. Gibson, D. A. Newcombe, J. R. Branen, and A. L. Branen, “Ag colloids and Ag clusters over EDAPTMS-coated silica nanoparticles: synthesis, characterization, and antibacterial activity against Escherichia coli,” Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 7, no. 3, pp. 305–314, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. C. S. Ciobanu, F. Massuyeau, L. V. Constantin, and D. Predoi, “Structural and physical properties of antibacterial Ag-doped nano-hydroxyapatite synthesized at 100°C,” Nanoscale Research Letters, vol. 6, article no. 613, 2011.
  18. M. Vallet-Regí and J. M. González-Calbet, “Calcium phosphates as substitution of bone tissues,” Progress in Solid State Chemistry, vol. 32, no. 1-2, pp. 1–31, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Costescu, I. Pasuk, F. Ungureanu et al., “Physico-chemical properties of nano-sized hexagonal hydroxyapatite powder synthesized by Sol-Gel,” Digest Journal of Nanomaterials and Biostructures, vol. 5, no. 4, pp. 989–1000, 2010. View at Scopus
  20. C. Limban and M. C. Chifiriuc, “Antibacterial activity of new dibenzoxepinone oximes with fluorine and trifluoromethyl group substituents,” International Journal of Molecular Sciences, vol. 12, pp. 6432–6444, 2011.
  21. C. Limban, L. Marutescu, and M. C. Chifiriuc, “Synthesis, spectroscopic properties and antipathogenic activity of new thiourea derivatives,” Molecules, vol. 16, pp. 7593–7607, 2011.
  22. C. Saviuc, A. M. Grumezescu, A. Holban et al., “Phenotypical studies of raw and nanosystem embedded Eugenia carryophyllata buds essential oil antibacterial activity on Pseudomonas aeruginosa and Staphylococcus aureus strains,” Biointerface Research in Applied Chemistry, vol. 1, pp. 111–118, 2011.
  23. M. C. Chifiriuc, R. Palade, and A. M. Israil, “Comparative analysis of disk diffusion and liquid medium microdillution methods fortesting the antibiotic susceptibility patterns of anaerobic bacterial strains isolated from intrabdominal infections,” Biointerface Research in Applied Chemistry, vol. 1, pp. 209–220, 2011.
  24. L. Marutescu, C. Limban, M. C. Chifiriuc, A. Missir -V, I. C. Chirita, and M. T. Caproiu, “Studies on the antimicrobial activity of new compounds containing thiourea function,” Biointerface Research in Applied Chemistry, vol. 1, pp. 236–241, 2011.
  25. A. M. Grumezescu, D. E. Mihaiescu, D. E. Mogoşanu et al., “In vitro assay of the antimicrobial activity of Fe3O4 and CoFe2O4/oleic acid—core/shell on clinical isolates of bacterial and fungal strains,” Optoelectronics and Advanced Materials, Rapid Communications, vol. 4, no. 11, pp. 1798–1801, 2010. View at Scopus
  26. C. Chifiriuc, V. Lazǎr, C. Bleotu et al., “Bacterial adherence to the cellular and inert substrate in the presence of CoFe2O4 and Fe3O4/oleic acid—core/shell,” Digest Journal of Nanomaterials and Biostructures, vol. 6, no. 1, pp. 37–42, 2011. View at Scopus
  27. C. Saviuc, A. M. Grumezescu, E. Oprea et al., “Antifungal activity of some vegetal extracts on Candida biofilms developed on inert substratum,” Biointerface Research in Applied Chemistry, vol. 1, pp. 15–23, 2011.
  28. C. Saviuc, A. M. Grumezescu, M. C. Chifiriuc et al., “In vitro methods for the study of microbial biofilms,” Biointerface Research in Applied Chemistry, vol. 1, pp. 31–40, 2011.
  29. L. Lutterotti, “Total pattern fitting for the combined size-strain-stress-texture determination in thin film diffraction,” Nuclear Instruments and Methods in Physics Research, Section B, vol. 268, no. 3-4, pp. 334–340, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. N. C. Popa, “The (hkl) dependence of diffraction-line broadening caused by strain and size for all laue groups in rietveld refinement,” Journal of Applied Crystallography, vol. 31, no. 2, pp. 176–180, 1998. View at Scopus
  31. S. Shanmugam, B. Viswanathan, and T. K. Varadarajan, “A novel single step chemical route for noble metal nanoparticles embedded organic-inorganic composite films,” Materials Chemistry and Physics, vol. 95, no. 1, pp. 51–55, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Predoi, R. V. Ghita, F. Ungureanu, C. C. Negrila, R. A. Vatasescu-Balcan, and M. Costache, “Characteristics of hydroxyapatite thin films,” Journal of Optoelectronics and Advanced Materials, vol. 9, no. 12, pp. 3827–3831, 2007. View at Scopus
  33. D. Predoi, M. Barsan, E. Andronescu, R. A. Vatasescu-Balcan, and M. Costache, “Hydroxyapatite-iron oxide bioceramic prepared using nano-size powders,” Journal of Optoelectronics and Advanced Materials, vol. 9, no. 11, pp. 3609–3613, 2007. View at Scopus
  34. C. S. Ciobanu, S. L. Iconaru, F. Massuyeau, L. V. Constantin, A. Costescu, and D. Predoi, “Synthesis, structure and luminescent properties of europium doped hydroxyapatite nanocrystalline powders,” Journal of Nanomaterials, vol. 2012, Article ID 942801, 9 pages, 2012. View at Publisher · View at Google Scholar
  35. C. S. Ciobanu, E. Andronescu, B. S. Vasile, C. M. Valsangiacom, R. V. Ghita, and D. Predoi, “Looking for new synthesis of hydroxyapatite doped with europium,” Journal of Optoelectronics and Advanced Materials, vol. 4, pp. 1515–1519, 2010.
  36. X. Bai, K. More, C. M. Rouleau, and A. Rabiei, “Functionally graded hydroxyapatite coatings doped with antibacterial components,” Acta Biomaterialia, vol. 6, no. 6, pp. 2264–2273, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Doat, F. Pellé, N. Gardant, and A. Lebugle, “Synthesis of luminescent bioapatite nanoparticles for utilization as a biological probe,” Journal of Solid State Chemistry, vol. 177, no. 4-5, pp. 1179–1187, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. J. C. Elliott, Structure and Chemistry of the Apatites and other Calcium Orthophosphates, Elsevier Press, Amsterdam, The Netherlands, 1994.
  39. J. Díaz-Visurraga, C. Gutiérrez, C. von Plessing, and A. García, “Metal nanostructures as antibacterial agents. Science against microbial pathogens: communicating current research and technological advances,” FORMATEX, vol. 3, pp. 210–218, 2011.
  40. H.-W. Wang, Y. Chen, H. Yang et al., “Ring-like pore structures of SecA: implication for bacterial protein-conducting channels,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 7, pp. 4221–4226, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. V. Lazar and C. Chifiriuc, “Medical significance and new therapeutical strategies for biofilm associated infections,” Roumanian Archives of Microbiology and Immunology, vol. 69, pp. 125–138, 2010.
  42. V. Lazǎr and M. C. Chifiriuc, “Architecture and physiology of microbial biofilms,” Roumanian archives of microbiology and immunology, vol. 69, no. 2, pp. 95–107, 2010. View at Scopus
  43. A. R. Shahverdi, A. Fakhimi, H. R. Shahverdi, and S. Minaian, “Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli,” Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 3, no. 2, pp. 168–171, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Guzman, J. Dille, and S. Godet, “Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria,” Nanomedicine: Nanotechnology, Biology and Medicine, vol. 8, no. 1, pp. 37–45, 2012. View at Publisher · View at Google Scholar
  45. F. Mirzajani, A. Ghassempour, A. Aliahmadi, and M. A. Esmaeili, “Antibacterial effect of silver nanoparticles on Staphylococcus aureus,” Research in Microbiology, vol. 162, no. 5, pp. 542–549, 2011. View at Publisher · View at Google Scholar · View at Scopus