About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 918640, 10 pages
http://dx.doi.org/10.1155/2013/918640
Review Article

Mechanostimulation Protocols for Cardiac Tissue Engineering

1BioEngLab, Health Science and Technology-Interdepartmental Center for Industrial Research (HST-CIRI), University of Bologna, I-40064 Ozzano Emilia, Italy
2Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, I-40126 Bologna, Italy
3Laboratory of Cellular and Molecular Engineering “Silvio Cavalcanti,” Department of Electrical, Electronic, and Information Engineering “G. Marconi” (DEI), University of Bologna, I-47521 Cesena, Italy

Received 30 April 2013; Accepted 18 June 2013

Academic Editor: Christof Kolb

Copyright © 2013 Marco Govoni et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Alcon, E. Cagavi Bozkulak, and Y. Qyang, “Regenerating functional heart tissue for myocardial repair,” Cellular and Molecular Life Sciences, vol. 69, no. 16, pp. 2635–2656, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. S. V. Murphy and A. Atala, “Organ engineering—combining stem cells, biomaterials, and bioreactors to produce bioengineered organs for transplantation,” Bioessays, vol. 35, no. 3, pp. 163–172, 2013. View at Publisher · View at Google Scholar
  3. P. Lei, H. You, and S. T. Andreadis, “Bioengineered skin substitutes,” Organ Regeneration: Methods in Molecular Biology, vol. 1001, pp. 267–278, 2013. View at Publisher · View at Google Scholar
  4. N. J. Panetta, D. M. Gupta, and M. T. Longaker, “Bone regeneration and repair,” Current Stem Cell Research and Therapy, vol. 5, no. 2, pp. 122–128, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. F. Wang and J. Guan, “Cellular cardiomyoplasty and cardiac tissue engineering for myocardial therapy,” Advanced Drug Delivery Reviews, vol. 62, no. 7-8, pp. 784–797, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Vono, G. Spinetti, M. Gubernator, and P. Madeddu, “What's new in regenerative medicine: split up of the mesenchymal stem cell family promises new hope for cardiovascular repair,” Journal of Cardiovascular Translational Research, vol. 5, no. 5, pp. 689–699, 2012. View at Publisher · View at Google Scholar
  7. T. Cashman, V. Gouon-Evans, and K. Costa, “Mesenchymal stem cells for cardiac therapy: practical challenges and potential mechanisms,” Stem Cell Reviews and Reports, vol. 9, no. 3, pp. 254–265, 2013. View at Publisher · View at Google Scholar
  8. R. J. Henning, “Stem cells in cardiac repair,” Future Cardiology, vol. 7, no. 1, pp. 99–117, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Le Huu, S. Prakash, and D. Shum-Tim, “Cellular cardiomyoplasty: current state of the field,” Regenerative Medicine, vol. 7, no. 4, pp. 571–582, 2012. View at Publisher · View at Google Scholar
  10. J. Tongers, D. W. Losordo, and U. Landmesser, “Stem and progenitor cell-based therapy in ischaemic heart disease: promise, uncertainties, and challenges,” European Heart Journal, vol. 32, no. 10, pp. 1197–1206, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. T. C. Doetschman, H. Eistetter, M. Katz, W. Schmidt, and R. Kemler, “The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium,” Journal of Embryology and Experimental Morphology, vol. 87, pp. 27–45, 1985. View at Scopus
  12. J. Nussbaum, E. Minami, M. A. Laflamme et al., “Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response,” FASEB Journal, vol. 21, no. 7, pp. 1345–1357, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Takahashi and S. Yamanaka, “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors,” Cell, vol. 126, no. 4, pp. 663–676, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Mauritz, K. Schwanke, M. Reppel et al., “Generation of functional murine cardiac myocytes from induced pluripotent stem cells,” Circulation, vol. 118, no. 5, pp. 507–517, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. A. P. Beltrami, L. Barlucchi, D. Torella et al., “Adult cardiac stem cells are multipotent and support myocardial regeneration,” Cell, vol. 114, no. 6, pp. 763–776, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. W. S. N. Shim, S. Jiang, P. Wong et al., “Ex vivo differentiation of human adult bone marrow stem cells into cardiomyocyte-like cells,” Biochemical and Biophysical Research Communications, vol. 324, no. 2, pp. 481–488, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. W. Chang, S. Lim, B. W. Song et al., “Phorbol myristate acetate differentiates human adipose-derived mesenchymal stem cells into functional cardiogenic cells,” Biochemical and Biophysical Research Communications, vol. 424, no. 4, pp. 740–746, 2012. View at Publisher · View at Google Scholar
  18. A. Pasini, F. Bonafè, M. Govoni et al., “Epigenetic signature of early cardiac regulatory genes in native human adipose-derived stem cells,” Cell Biochemistry and Biophysics, 2013. View at Publisher · View at Google Scholar
  19. P. Jakob and U. Landmesser, “Current status of cell-based therapy for heart failure,” Current Heart Failure Reports, vol. 10, no. 2, pp. 165–176, 2013. View at Publisher · View at Google Scholar
  20. J. Lee and C. M. Terracciano, “Cell therapy for cardiac repair,” The British Medical Bulletin, vol. 94, no. 1, pp. 65–80, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Malliaras and E. Marbán, “Cardiac cell therapy: where weve been, where we are, and where we should be headed,” The British Medical Bulletin, vol. 98, no. 1, pp. 161–185, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Sekine, T. Shimizu, and T. Okano, “Myocardial tissue engineering: toward a bioartificial pump,” Cell and Tissue Research, vol. 347, no. 3, pp. 775–782, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Tee, Z. Lokmic, W. A. Morrison, and R. J. Dilley, “Strategies in cardiac tissue engineering,” Australian and New Zealand Journal of Surgery, vol. 80, no. 10, pp. 683–693, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Ceccaldi, S. G. Fullana, C. Alfarano et al., “Alginate scaffolds for mesenchymal stem cell cardiac therapy: influence of alginate composition,” Cell Transplantation, vol. 21, no. 9, pp. 1969–1984, 2012. View at Publisher · View at Google Scholar
  25. G. Pasquinelli, C. Orrico, L. Foroni et al., “Mesenchymal stem cell interaction with a non-woven hyaluronan-based scaffold suitable for tissue repair,” Journal of Anatomy, vol. 213, no. 5, pp. 520–530, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Muscari, F. Bonafè, S. Martin-Suarez, et al., “Restored perfusion and reduced inflammation in the infarcted heart after grafting stem cells with a hyaluronan-based scaffold,” Journal of Cellular and Molecular Medicine, vol. 17, no. 4, pp. 518–530, 2013. View at Publisher · View at Google Scholar
  27. E. Fiumana, G. Pasquinelli, L. Foroni et al., “Localization of mesenchymal stem cells grafted with a hyaluronan-based scaffold in the infarcted heart,” Journal of Surgical Research, vol. 179, no. 1, pp. e21–e29, 2013. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Gualandi, M. Soccio, M. Govoni, et al., “Poly(butylene/diethylene glycol succinate) multiblock copolyester as a candidate biomaterial for soft tissue engineering: solid-state properties, degradability, and biocompatibility,” Journal of Bioactive and Compatible Polymers, vol. 27, no. 3, pp. 244–264, 2012. View at Publisher · View at Google Scholar
  29. K. Shapira, D. Dikovsky, M. Habib, L. Gepstein, and D. Seliktar, “Hydrogels for cardiac tissue regeneration,” Bio-Medical Materials and Engineering, vol. 18, no. 4-5, pp. 309–314, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. W. Y. Yeong, N. Sudarmadji, H. Y. Yu et al., “Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering,” Acta Biomaterialia, vol. 6, no. 6, pp. 2028–2034, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. J. P. Karam, C. Muscari, and C. N. Montero-Menei, “Combining adult stem cells and polymeric devices for tissue engineering in infarcted myocardium,” Biomaterials, vol. 33, no. 23, pp. 5683–5695, 2012. View at Publisher · View at Google Scholar
  32. G. de Santis, A. B. Lennon, F. Boschetti, B. Verhegghe, P. Verdonck, and P. J. Prendergast, “How can cells sense the elasticity of a substrate? An analysis using a cell tensegrity model,” European Cells & Materials, vol. 22, pp. 202–213, 2011. View at Scopus
  33. G. C. Engelmayr Jr., M. Cheng, C. J. Bettinger, J. T. Borenstein, R. Langer, and L. E. Freed, “Accordion-like honeycombs for tissue engineering of cardiac anisotropy,” Nature Materials, vol. 7, no. 12, pp. 1003–1010, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, “Matrix elasticity directs stem cell lineage specification,” Cell, vol. 126, no. 4, pp. 677–689, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. H. C. Chen and Y. C. Hu, “Bioreactors for tissue engineering,” Biotechnology Letters, vol. 28, no. 18, pp. 1415–1423, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. W. L. Grayson, T. P. Martens, G. M. Eng, M. Radisic, and G. Vunjak-Novakovic, “Biomimetic approach to tissue engineering,” Seminars in Cell and Developmental Biology, vol. 20, no. 6, pp. 665–673, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Takahashi, Y. Kakimoto, K. Toda, and K. Naruse, “Mechanobiology in cardiac physiology and diseases,” Journal of Cellular and Molecular Medicine, vol. 17, no. 2, pp. 225–232, 2013. View at Publisher · View at Google Scholar
  38. H. H. Vandenburgh, R. Solerssi, J. Shansky, J. W. Adams, and S. A. Henderson, “Mechanical stimulation of organogenic cardiomyocyte growth in vitro,” The American Journal of Physiology, vol. 270, no. 5, pp. C1284–C1292, 1996. View at Scopus
  39. N. Bursac, M. Papadaki, R. J. Cohen et al., “Cardiac muscle tissue engineering: toward an in vitro model for electrophysiological studies,” The American Journal of Physiology, vol. 277, no. 2, part 2, pp. H433–H444, 1999. View at Scopus
  40. R. L. Carrier, M. Papadaki, M. Rupnick et al., “Cardiac tissue engineering: cell seeding, cultivation parameters, and tissue construct characterization,” Biotechnology and Bioengineering, vol. 64, no. 5, pp. 580–589, 1999. View at Publisher · View at Google Scholar
  41. C. Fink, S. Ergün, D. Kralisch, U. Remmers, J. Weil, and T. Eschenhagen, “Chronic stretch of engineered heart tissue induces hypertrophy and functional improvement,” FASEB Journal, vol. 14, no. 5, pp. 669–679, 2000. View at Scopus
  42. P. Akhyari, P. W. M. Fedak, R. D. Weisel et al., “Mechanical stretch regimen enhances the formation of bioengineered autologous cardiac muscle grafts,” Circulation, vol. 106, no. 12, supplement 1, pp. I137–I142, 2002. View at Scopus
  43. W. Zimmermann, K. Schneiderbanger, P. Schubert et al., “Tissue engineering of a differentiated cardiac muscle construct,” Circulation Research, vol. 90, no. 2, pp. 223–230, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. Y. Iijima, T. Nagai, M. Mizukami et al., “Beating is necessary for transdifferentiation of skeletal muscle-derived cells into cardiomyocytes,” The FASEB Journal, vol. 17, no. 10, pp. 1361–1363, 2003. View at Scopus
  45. M. Radisic, L. Yang, J. Boublik et al., “Medium perfusion enables engineering of compact and contractile cardiac tissue,” The American Journal of Physiology, vol. 286, no. 2, pp. H507–H516, 2004. View at Scopus
  46. J. Boublik, H. Park, M. Radisic et al., “Mechanical properties and remodeling of hybrid cardiac constructs made from heart cells, fibrin, and biodegradable, elastomeric knitted fabric,” Tissue Engineering, vol. 11, no. 7-8, pp. 1122–1132, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. Z. Feng, T. Matsumoto, Y. Nomura, and T. Nakamura, “An electro-tensile bioreactor for 3-D culturing of cardiomyocytes,” IEEE Engineering in Medicine and Biology Magazine, vol. 24, no. 4, pp. 73–79, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. E. Figallo, C. Cannizzaro, S. Gerecht et al., “Micro-bioreactor array for controlling cellular microenvironments,” Lab on a Chip, vol. 7, no. 6, pp. 710–719, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. M. A. Brown, R. K. Iyer, and M. Radisic, “Pulsatile perfusion bioreactor for cardiac tissue engineering,” Biotechnology Progress, vol. 24, no. 4, pp. 907–920, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. S. J. Gwak, S. H. Bhang, I. K. Kim et al., “The effect of cyclic strain on embryonic stem cell-derived cardiomyocytes,” Biomaterials, vol. 29, no. 7, pp. 844–856, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. V. F. Shimko and W. C. Claycomb, “Effect of mechanical loading on three-dimensional cultures of embryonic stem cell-derived cardiomyocytes,” Tissue Engineering A, vol. 14, no. 1, pp. 49–58, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. D. Ge, X. Liu, L. Li et al., “Chemical and physical stimuli induce cardiomyocyte differentiation from stem cells,” Biochemical and Biophysical Research Communications, vol. 381, no. 3, pp. 317–321, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. Y. Barash, T. Dvir, P. Tandeitnik, E. Ruvinov, H. Guterman, and S. Cohen, “Electric field stimulation integrated into perfusion bioreactor for cardiac tissue engineering,” Tissue Engineering C, vol. 16, no. 6, pp. 1417–1426, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. H. Hosseinkhani, M. Hosseinkhani, S. Hattori, R. Matsuoka, and N. Kawaguchi, “Micro and nano-scale in vitro 3D culture system for cardiac stem cells,” Journal of Biomedical Materials Research A, vol. 94, no. 1, pp. 1–8, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Salameh, A. Wustmann, S. Karl et al., “Cyclic mechanical stretch induces cardiomyocyte orientation and polarization of the gap junction protein connexin43,” Circulation Research, vol. 106, no. 10, pp. 1592–1602, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. P. A. Galie and J. P. Stegemann, “Simultaneous application of interstitial flow and cyclic mechanical strain to a three-dimensional cell-seeded hydrogel,” Tissue Engineering C, vol. 17, no. 5, pp. 527–536, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. T. Hollweck, B. Akra, S. Häussler, et al., “A novel pulsatile bioreactor for mechanical stimulation of tissue engineered cardiac constructs,” Journal of Functional Biomaterials, vol. 2, no. 3, pp. 107–118, 2011. View at Publisher · View at Google Scholar
  58. H. Kenar, G. T. Kose, M. Toner, D. L. Kaplan, and V. Hasirci, “A 3D aligned microfibrous myocardial tissue construct cultured under transient perfusion,” Biomaterials, vol. 32, no. 23, pp. 5320–5329, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. G. Kensah, I. Gruh, J. Viering et al., “A novel miniaturized multimodal bioreactor for continuous in situ assessment of bioartificial cardiac tissue during stimulation and maturation,” Tissue Engineering C, vol. 17, no. 4, pp. 463–473, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. T. M. Maul, D. W. Chew, A. Nieponice, and D. A. Vorp, “Mechanical stimuli differentially control stem cell behavior: morphology, proliferation, and differentiation,” Biomechanics and Modeling in Mechanobiology, vol. 10, no. 6, pp. 939–953, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. N. L. Tulloch, V. Muskheli, M. V. Razumova et al., “Growth of engineered human myocardium with mechanical loading and vascular coculture,” Circulation Research, vol. 109, no. 1, pp. 47–59, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Govoni, F. Lotti, L. Biagiotti et al., “An innovative stand-alone bioreactor for the highly reproducible transfer of cyclic mechanical stretch to stem cells cultured in a 3D scaffold,” Journal of Tissue Engineering and Regenerative Medicine, 2012. View at Publisher · View at Google Scholar
  63. R. Maidhof, N. Tandon, E. J. Lee et al., “Biomimetic perfusion and electrical stimulation applied in concert improved the assembly of engineered cardiac tissue,” Journal of Tissue Engineering and Regenerative Medicine, vol. 6, no. 10, pp. e12–e23, 2012. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Shachar, N. Benishti, and S. Cohen, “Effects of mechanical stimulation induced by compression and medium perfusion on cardiac tissue engineering,” Biotechnology Progress, vol. 28, no. 6, pp. 1551–1559, 2012. View at Publisher · View at Google Scholar
  65. M. Liu, S. Montazeri, T. Jedlovsky et al., “Bio-stretch, a computerized cell strain apparatus for three-dimensional organotypic cultures,” In Vitro Cellular and Developmental Biology—Animal, vol. 35, no. 2, pp. 87–93, 1999. View at Scopus
  66. W. H. Zimmermann, I. Melnychenko, and T. Eschenhagen, “Engineered heart tissue for regeneration of diseased hearts,” Biomaterials, vol. 25, no. 9, pp. 1639–1647, 2004. View at Publisher · View at Google Scholar · View at Scopus
  67. W. H. Zimmermann, I. Melnychenko, G. Wasmeier et al., “Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts,” Nature Medicine, vol. 12, no. 4, pp. 452–458, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. B. S. Kim and D. J. Mooney, “Scaffolds for engineering muscle under cyclic mechanical strain conditions,” Journal of Biomechanical Engineering, vol. 122, no. 3, pp. 210–215, 2000. View at Publisher · View at Google Scholar · View at Scopus
  69. A. J. Banes, J. Gilbert, D. Taylor, and O. Monbureau, “A new vacuum-operated stress-providing instrument that applies static or variable duration cyclic tension or compression to cells in vitro,” Journal of Cell Science, vol. 75, no. 1, pp. 35–42, 1985. View at Scopus
  70. T. Dvir, N. Benishti, M. Shachar, and S. Cohen, “A novel perfusion bioreactor providing a homogenous milieu for tissue regeneration,” Tissue Engineering, vol. 12, no. 10, pp. 2843–2852, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. D. E. Orr and K. J. L. Burg, “Design of a modular bioreactor to incorporate both perfusion flow and hydrostatic compression for tissue engineering applications,” Annals of Biomedical Engineering, vol. 36, no. 7, pp. 1228–1241, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. K. Shahin and P. M. Doran, “Tissue engineering of cartilage using a mechanobioreactor exerting simultaneous mechanical shear and compression to simulate the rolling action of articular joints,” Biotechnology and Bioengineering, vol. 109, no. 4, pp. 1060–1073, 2012. View at Publisher · View at Google Scholar · View at Scopus
  73. P. Y. Wang and W. B. Tsai, “Modulation of the proliferation and matrix synthesis of chondrocytes by dynamic compression on genipin-crosslinked chitosan/collagen scaffolds,” Journal of Biomaterials Science, Polymer Edition, vol. 24, no. 5, pp. 507–519, 2013. View at Publisher · View at Google Scholar
  74. I. Martin, T. Smith, and D. Wendt, “Bioreactor-based roadmap for the translation of tissue engineering strategies into clinical products,” Trends in Biotechnology, vol. 27, no. 9, pp. 495–502, 2009. View at Publisher · View at Google Scholar · View at Scopus