About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 923475, 6 pages
Research Article

Prior Lung Inflammation Impacts on Body Distribution of Gold Nanoparticles

1Laboratory of Molecular and Cellular Responses to Xenobiotics, CNRS EAC 7059, Unit of Functional and Adaptive Biology (BFA), Sorbonne Paris Cité, University of Paris Diderot, 75 013 Paris, France
2Lung Toxicology Research Unit, KU Leuven, 3000 Leuven, Belgium
3Clinical Research Unit, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, North Carolina NC 27709, USA
4Louvain Centre for Toxicology and Applied Pharmacology, Catholic University of Louvain, 1200 Brussels, Belgium

Received 5 September 2012; Revised 29 November 2012; Accepted 6 December 2012

Academic Editor: Ernesto Alfaro-Moreno

Copyright © 2013 Salik Hussain et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Introduction. Gold- (Au-) based nanomaterials have shown promising potential in nanomedicine. The individual health status is an important determinant of the response to injury/exposure. It is, therefore, critical to evaluate exposure to Au-nanomaterials with varied preexisting health status. Objective. The goal of this research was to determine the extent of extrapulmonary translocation from healthy and inflamed lungs after pulmonary exposure to AuNPs. Male BALB/c mice received a single dose of AuNPs (40 nm) by oropharyngeal aspiration 24 hours after priming with LPS ( ) through the same route. Metal contents were analyzed in different organs by inductively coupled plasma-mass spectrometry (ICP-MS). Results. Oropharyngeal aspiration resulted in high metal concentrations in lungs ( ); however, these were much lower after pretreatment with LPS ( ). Significantly higher concentrations of Au were detected in heart and thymus of healthy animals, whereas higher concentrations of Au NPs were observed in spleen in LPS-primed animals. Conclusions. The distribution of AuNPs from lungs to secondary target organs depends upon the health status, indicating that targeting of distinct secondary organs in nanomedicine needs to be considered carefully under health and inflammatory conditions.