About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 923742, 10 pages
http://dx.doi.org/10.1155/2013/923742
Review Article

Molecular Fingerprints to Identify Candida Species

1Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 531, 2000 Rosario, Argentina
2Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI, UNR-CONICET), Suipacha 531, 2000 Rosario, Argentina
3Departamento de Tecnología Farmacéutica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 531, 2000 Rosario, Argentina
4Instituto de Química Rosario (IQUIR, UNR-CONICET), Suipacha 531, 2000 Rosario, Argentina

Received 9 April 2013; Revised 30 May 2013; Accepted 6 June 2013

Academic Editor: Yoko Tabe

Copyright © 2013 Claudia Spampinato and Darío Leonardi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. A. Pfaller and D. J. Diekema, “Epidemiology of invasive candidiasis: a persistent public health problem,” Clinical Microbiology Reviews, vol. 20, no. 1, pp. 133–163, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Kim and P. Sudbery, “Candida albicans, a major human fungal pathogen,” Journal of Microbiology, vol. 49, no. 2, pp. 171–177, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. S. K. Mehta, D. A. Stevens, S. K. Mishra, F. Feroze, and D. L. Pierson, “Distribution of Candida albicans genotypes among family members,” Diagnostic Microbiology and Infectious Disease, vol. 34, no. 1, pp. 19–25, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. M. A. Ghannoum, R. J. Jurevic, P. K. Mukherjee et al., “Characterization of the oral fungal microbiome (mycobiome) in healthy individuals,” PLoS Pathogens, vol. 6, no. 1, Article ID e1000713, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. C. M. Hull, R. M. Raisner, and A. D. Johnson, “Evidence for mating of the ‘asexual’ yeast Candida albicans in a mammalian host,” Science, vol. 289, no. 5477, pp. 307–310, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Coste, A. Selmecki, A. Forche et al., “Genotypic evolution of azole resistance mechanisms in sequential Candida albicans isolates,” Eukaryotic Cell, vol. 6, no. 10, pp. 1889–1904, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. A. T. Coste, M. Karababa, F. Ischer, J. Bille, and D. Sanglard, “TAC1, transcriptional activator of CDR genes, is a new transcription factor involved in the regulation of Candida albicansABC transporters CDR1 and CDR2,” Eukaryotic Cell, vol. 3, no. 6, pp. 1639–1652, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Coste, V. Turner, F. Ischer et al., “A mutation in Tac1p, a transcription factor regulating CDR1 and CDR2, is coupled with loss of heterozygosity at chromosome 5 to mediate antifungal resistance in Candida albicans,” Genetics, vol. 172, no. 4, pp. 2139–2156, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. M.-E. Bougnoux, D. Diogo, N. François et al., “Multilocus sequence typing reveals intrafamilial transmission and microevolutions of Candida albicans isolates from the human digestive tract,” Journal of Clinical Microbiology, vol. 44, no. 5, pp. 1810–1820, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. F. C. Odds, A. D. Davidson, M. D. Jacobsen et al., “Candida albicans strain maintenance, replacement, and microvariation demonstrated by multilocus sequence typing,” Journal of Clinical Microbiology, vol. 44, no. 10, pp. 3647–3658, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Forche, G. May, and P. T. Magee, “Demonstration of loss of heterozygosity by single-nucleotide polymorphism microarray analysis and alterations in strain morphology in Candida albicans strains during infection,” Eukaryotic Cell, vol. 4, no. 1, pp. 156–165, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Forche, P. T. Magee, A. Selmecki, J. Berman, and G. May, “Evolution in Candida albicans populations during a single passage through a mouse host,” Genetics, vol. 182, no. 3, pp. 799–811, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Forche, D. Abbey, T. Pisithkul et al., “Stress alters rates and types of loss of heterozygosity in Candida albicans,” MBio, vol. 2, no. 4, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. A. M. Tortorano, C. Kibbler, J. Peman, H. Bernhardt, L. Klingspor, and R. Grillot, “Candidaemia in Europe: epidemiology and resistance,” International Journal of Antimicrobial Agents, vol. 27, no. 5, pp. 359–366, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. J. K. Chow, Y. Golan, R. Ruthazer et al., “Factors associated with candidemia caused by non-albicans Candida species versus Candida albicans in the intensive care unit,” Clinical Infectious Diseases, vol. 46, no. 8, pp. 1206–1213, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. J. D. Sobel, “The emergence of non-albicans Candida species as causes of invasive candidiasis and candidemia,” Current Infectious Disease Reports, vol. 8, no. 6, pp. 427–433, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Y. Tan, A. L. Tan, N. W. S. Tee, L. S. Y. Ng, and C. W. J. Chee, “The increased role of non-albicans species in candidaemia: results from a 3-year surveillance study,” Mycoses, vol. 53, no. 6, pp. 515–521, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Dongari-Bagtzoglou, P. Dwivedi, E. Ioannidou, M. Shaqman, D. Hull, and J. Burleson, “Oral Candida infection and colonization in solid organ transplant recipients,” Oral Microbiology and Immunology, vol. 24, no. 3, pp. 249–254, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. D. L. Horn, D. Neofytos, E. J. Anaissie et al., “Epidemiology and outcomes of candidemia in 2019 patients: data from the prospective antifungal therapy alliance registry,” Clinical Infectious Diseases, vol. 48, no. 12, pp. 1695–1703, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Almirante, D. Rodríguez, M. Cuenca-Estrella et al., “Epidemiology, risk factors, and prognosis of Candida parapsilosis bloodstream infections: case-control population-based surveillance study of patients in Barcelona, Spain, from 2002 to 2003,” Journal of Clinical Microbiology, vol. 44, no. 5, pp. 1681–1685, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. M. A. Pfaller, P. G. Pappas, and J. R. Wingard, “Invasive fungal pathogens: current epidemiological trends,” Clinical Infectious Diseases, vol. 43, 1, pp. S3–S14, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. M. A. Pfaller, D. J. Diekema, L. Steele-Moore et al., “Twelve years of fluconazole in clinical practice: global-trends in species distribution and fluconazole susceptibility of bloodstream isolates of Candida,” Clinical Microbiology and Infection, vol. 10, 1, pp. 11–23, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. M. A. Pfaller, D. J. Diekema, R. N. Jones et al., “International surveillance of bloodstream infections due to Candida species: frequency of occurrence and in vitro susceptibilities to fluconazole, ravuconazole, and voriconazole of isolates collected from 1997 through 1999 in the SENTRY antimicrobial surveillance program,” Journal of Clinical Microbiology, vol. 39, no. 9, pp. 3254–3259, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. A. R. Dodgson, K. J. Dodgson, C. Pujol, M. A. Pfaller, and D. R. Soll, “Clade-specific flucytosine resistance is due to a single nucleotide change in the FUR1 gene of Candida albicans,” Antimicrobial Agents and Chemotherapy, vol. 48, no. 6, pp. 2223–2227, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. F. Saghrouni, J. B. Abdeljelil, J. Boukadida, and M. B. Said, “Molecular methods for strain typing of Candida albicans: a review,” Journal of Applied Microbiology, vol. 114, no. 6, pp. 1559–1574. View at Publisher · View at Google Scholar
  26. D. R. Soll, “The ins and outs of DNA fingerprinting the infectious fungi,” Clinical Microbiology Reviews, vol. 13, no. 2, pp. 332–370, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Jones, N. A. Federspiel, H. Chibana et al., “The diploid genome sequence of Candida albicans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 19, pp. 7329–7334, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. B. R. Braun, M. van het Hoog, C. d'Enfert et al., “A human-curated annotation of the Candida albicans genome,” PLoS Genetics, vol. 1, no. 1, pp. 0036–0057, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Van het Hoog, T. J. Rast, M. Martchenko et al., “Assembly of the Candida albicans genome into sixteen supercontigs aligned on the eight chromosomes,” Genome Biology, vol. 8, no. 4, article R52, pp. 1–11, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. F. C. Odds and M. D. Jacobsen, “Multilocus sequence typing of pathogenic Candida species,” Eukaryotic Cell, vol. 7, no. 7, pp. 1075–1084, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. M.-E. Bougnoux, S. Morand, and C. D'Enfert, “Usefulness of multilocus sequence typing for characterization of clinical isolates of Candida albicans,” Journal of Clinical Microbiology, vol. 40, no. 4, pp. 1290–1297, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Tavanti, N. A. R. Gow, S. Senesi, M. C. J. Maiden, and F. C. Odds, “Optimization and validation of multilocus sequence typing for Candida albicans,” Journal of Clinical Microbiology, vol. 41, no. 8, pp. 3765–3776, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. M.-E. Bougnoux, A. Tavanti, C. Bouchier et al., “Collaborative consensus for optimized multilocus sequence typing of Candida albicans,” Journal of Clinical Microbiology, vol. 41, no. 11, pp. 5265–5266, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. M. B. Arnaud, M. C. Costanzo, M. S. Skrzypek et al., “Sequence resources at the Candida genome database,” Nucleic Acids Research, vol. 35, no. 1, pp. D452–D456, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. K.-W. Chen, Y.-C. Chen, H.-J. Lo et al., “Multilocus sequence typing for analyses of clonality of Candida albicans strains in Taiwan,” Journal of Clinical Microbiology, vol. 44, no. 6, pp. 2172–2178, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. D. A. Da Matta, A. S. Melo, A. L. Colombo, J. P. Frade, M. Nucci, and T. J. Lott, “Candidemia surveillance in Brazil: evidence for a geographical boundary defining an area exhibiting an abatement of infections by Candida albicans group 2 strains,” Journal of Clinical Microbiology, vol. 48, no. 9, pp. 3062–3067, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. F. C. Odds, “Molecular phylogenetics and epidemiology of Candida albicans,” Future Microbiology, vol. 5, no. 1, pp. 67–79, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. M.-E. Bougnoux, C. Pujol, D. Diogo, C. Bouchier, D. R. Soll, and C. d'Enfert, “Mating is rare within as well as between clades of the human pathogen Candida albicans,” Fungal Genetics and Biology, vol. 45, no. 3, pp. 221–231, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. F. C. Odds, M.-E. Bougnoux, D. J. Shaw et al., “Molecular phylogenetics of Candida albicans,” Eukaryotic Cell, vol. 6, no. 6, pp. 1041–1052, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Tavanti, A. D. Davidson, M. J. Fordyce, N. A. R. Gow, M. C. J. Maiden, and F. C. Odds, “Population structure and properties of Candida albicans, as determined by multilocus sequence typing,” Journal of Clinical Microbiology, vol. 43, no. 11, pp. 5601–5613, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. T. J. Lott and R. T. Scarborough, “Development of a MLST-biased SNP microarray for Candida albicans,” Fungal Genetics and Biology, vol. 45, no. 6, pp. 803–811, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. A. R. Dodgson, C. Pujol, D. W. Denning, D. R. Soll, and A. J. Fox, “Multilocus sequence typing of Candida glabrata reveals geographically enriched clades,” Journal of Clinical Microbiology, vol. 41, no. 12, pp. 5709–5717, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. R. Shemer, Z. Weissman, N. Hashman, and D. Kornitzer, “A highly polymorphic degenerate microsatellite for molecular strain typing of Candida krusei,” Microbiology, vol. 147, no. 8, pp. 2021–2028, 2001. View at Scopus
  44. P. Sampaio, L. Gusmão, A. Correia et al., “New microsatellite multiplex PCR for Candida albicans strain typing reveals microevolutionary changes,” Journal of Clinical Microbiology, vol. 43, no. 8, pp. 3869–3876, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. J.-M. Costa, O. Eloy, F. Botterel, G. Janbon, and S. Bretagne, “Use of microsatellite markers and gene dosage to quantify gene copy numbers in Candida albicans,” Journal of Clinical Microbiology, vol. 43, no. 3, pp. 1387–1389, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. T. J. Lott, J. P. Frade, and S. R. Lockhart, “Multilocus sequence type analysis reveals both clonality and recombination in populations of Candida glabrata bloodstream isolates from U.S. surveillance studies,” Eukaryotic Cell, vol. 9, no. 4, pp. 619–625, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. T. J. Lott, J. P. Frade, G. M. Lyon, N. Iqbal, and S. R. Lockhart, “Bloodstream and non-invasive isolates of Candida glabrata have similar population structures and fluconazole susceptibilities,” Medical Mycology, vol. 50, no. 2, pp. 136–142, 2012. View at Publisher · View at Google Scholar · View at Scopus
  48. P. A. Mann, P. M. McNicholas, A. S. Chau et al., “Impact of antifungal prophylaxis on colonization and azole susceptibility of Candida species,” Antimicrobial Agents and Chemotherapy, vol. 53, no. 12, pp. 5026–5034, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. A. J. Zimbeck, N. Iqbal, A. M. Ahlquist et al., “FKS mutations and elevated echinocandin MIC values among Candida glabrata isolates from U.S. population-based surveillance,” Antimicrobial Agents and Chemotherapy, vol. 54, no. 12, pp. 5042–5047, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. B. A. McManus, D. C. Coleman, G. Moran et al., “Multilocus sequence typing reveals that the population structure of Candida dubliniensis is significantly less divergent than that of Candida albicans,” Journal of Clinical Microbiology, vol. 46, no. 2, pp. 652–664, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. M. D. Jacobsen, N. A. R. Gow, M. C. J. Maiden, D. J. Shaw, and F. C. Odds, “Strain typing and determination of population structure of Candida krusei by multilocus sequence typing,” Journal of Clinical Microbiology, vol. 45, no. 2, pp. 317–323, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. A. Tavanti, A. D. Davidson, E. M. Johnson et al., “Multilocus sequence typing for differentiation of strains of Candida tropicalis,” Journal of Clinical Microbiology, vol. 43, no. 11, pp. 5593–5600, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. M. D. Jacobsen, A. D. Davidson, S.-Y. Li, D. J. Shaw, N. A. R. Gow, and F. C. Odds, “Molecular phylogenetic analysis of Candida tropicalis isolates by multi-locus sequence typing,” Fungal Genetics and Biology, vol. 45, no. 6, pp. 1040–1042, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. H.-H. Chou, H.-J. Lo, K.-W. Chen, M.-H. Liao, and S.-Y. Li, “Multilocus sequence typing of Candida tropicalis shows clonal cluster enriched in isolates with resistance or trailing growth of fluconazole,” Diagnostic Microbiology and Infectious Disease, vol. 58, no. 4, pp. 427–433, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. Y. Wu, H. Zhou, J. Wang et al., “Analysis of the clonality of Candida tropicalis strains from a general hospital in Beijing using multilocus sequence typing,” PLoS One, vol. 7, Article ID e47767, 2012.
  56. K.-W. Chen, Y.-C. Chen, Y.-H. Lin, H.-H. Chou, and S.-Y. Li, “The molecular epidemiology of serial Candida tropicalis isolates from ICU patients as revealed by multilocus sequence typing and pulsed-field gel electrophoresis,” Infection, Genetics and Evolution, vol. 9, no. 5, pp. 912–920, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Desnos-Ollivier, S. Bretagne, C. Bernède et al., “Clonal population of flucytosine-resistant Candida tropicalis from blood cultures, Paris, France,” Emerging Infectious Diseases, vol. 14, no. 4, pp. 557–565, 2008. View at Scopus
  58. E. J. Oliveira, J. G. Pádua, M. I. Zucchi, R. Vencovsky, and M. L. C. Vieira, “Origin, evolution and genome distribution of microsatellites,” Genetics and Molecular Biology, vol. 29, no. 2, pp. 294–307, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. F. Dalle, N. Franco, J. Lopez et al., “Comparative genotyping of Candida albicans bloodstream and nonbloodstream isolates at a polymorphic microsatellite locus,” Journal of Clinical Microbiology, vol. 38, no. 12, pp. 4554–4559, 2000. View at Scopus
  60. F. Botterel, C. Desterke, C. Costa, and S. Bretagne, “Analysis of microsatellite markers of Candida albicans used for rapid typing,” Journal of Clinical Microbiology, vol. 39, no. 11, pp. 4076–4081, 2001. View at Publisher · View at Google Scholar · View at Scopus
  61. O. Eloy, S. Marque, F. Botterel et al., “Uniform distribution of three Candida albicans microsatellite markers in two French ICU populations supports a lack of nosocomial cross-contamination,” BMC Infectious Diseases, vol. 6, article no. 162, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. D. Garcia-Hermoso, O. Cabaret, G. Lecellier et al., “Comparison of microsatellite length polymorphism and multilocus sequence typing for DNA-based typing of Candida albicans,” Journal of Clinical Microbiology, vol. 45, no. 12, pp. 3958–3963, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. F. Stéphan, M. Sialou Bah, C. Desterke et al., “Molecular diversity and routes of colonization of Candida albicans in a surgical intensive care unit, as studied using microsatellite markers,” Clinical Infectious Diseases, vol. 35, no. 12, pp. 1477–1483, 2002. View at Publisher · View at Google Scholar · View at Scopus
  64. R. E. Fundyga, T. J. Lott, and J. Arnold, “Population structure of Candida albicans, a member of the human flora, as determined by microsatellite loci,” Infection, Genetics and Evolution, vol. 2, no. 1, pp. 57–68, 2002. View at Publisher · View at Google Scholar · View at Scopus
  65. T. J. Lott, R. E. Fundyga, M. E. Brandt et al., “Stability of allelic frequencies and distributions of Candida albicans microsatellite loci from U.S. population-based surveillance isolates,” Journal of Clinical Microbiology, vol. 41, no. 3, pp. 1316–1321, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. P. Sampaio, L. Gusmão, C. Alves, C. Pina-Vaz, A. Amorim, and C. Pais, “Highly polymorphic microsatellite for identification of Candida albicans strains,” Journal of Clinical Microbiology, vol. 41, no. 2, pp. 552–557, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. F. Foulet, N. Nicolas, O. Eloy et al., “Microsatellite marker analysis as a typing system for Candida glabrata,” Journal of Clinical Microbiology, vol. 43, no. 9, pp. 4574–4579, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. F. Grenouillet, L. Millon, J.-M. Bart et al., “Multiple-locus variable-number tandem-repeat analysis for rapid typing of Candida glabrata,” Journal of Clinical Microbiology, vol. 45, no. 11, pp. 3781–3784, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. S. Bretagne, J.-M. Costa, C. Besmond, R. Carsique, and R. Calderone, “Microsatellite polymorphism in the promoter sequence of the elongation factor 3 gene of Candida albicans as the basis for a typing system,” Journal of Clinical Microbiology, vol. 35, no. 7, pp. 1777–1780, 1997. View at Scopus
  70. D. Metzgar, D. Field, R. Haubrich, and C. Wills, “Sequence analysis of a compound coding-region microsatellite in Candida albicans resolves homoplasies and provides a high-resolution tool for genotyping,” FEMS Immunology and Medical Microbiology, vol. 20, no. 2, pp. 103–109, 1998. View at Publisher · View at Google Scholar · View at Scopus
  71. F. Dalle, L. Dumont, N. Franco et al., “Genotyping of Candida albicans oral strains from healthy individuals by polymorphic microsatellite locus analysis,” Journal of Clinical Microbiology, vol. 41, no. 5, pp. 2203–2205, 2003. View at Publisher · View at Google Scholar · View at Scopus
  72. F. V. Lunel, L. Licciardello, S. Stefani et al., “Lack of consistent short sequence repeat polymorphisms in genetically homologous colonizing and invasive Candida albicans strains,” Journal of Bacteriology, vol. 180, no. 15, pp. 3771–3778, 1998. View at Scopus
  73. C. L. 'ollivier, C. Labruère, A. Jebrane et al., “Using a Multi-Locus Microsatellite Typing method improved phylogenetic distribution of Candida albicans isolates but failed to demonstrate association of some genotype with the commensal or clinical origin of the isolates,” Infection, Genetics and Evolution, vol. 12, pp. 1949–1957, 2012.
  74. P. R. Hunter, “Reproducibility and indices of discriminatory power of microbial typing methods,” Journal of Clinical Microbiology, vol. 28, no. 9, pp. 1903–1905, 1990. View at Scopus
  75. D. Garcia-Hermoso, D. M. MacCallum, T. J. Lott et al., “Multicenter collaborative study for standardization of Candida albicans genotyping using a polymorphic microsatellite marker,” Journal of Clinical Microbiology, vol. 48, no. 7, pp. 2578–2581, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. S. Abbes, H. Sellami, A. Sellami et al., “Candida glabrata strain relatedness by new microsatellite markers,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 31, pp. 83–91, 2012.
  77. S. Brisse, C. Pannier, A. Angoulvant et al., “Uneven distribution of mating types among genotypes of Candida glabrata isolates from clinical samples,” Eukaryotic Cell, vol. 8, no. 3, pp. 287–295, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. A. Enache-Angoulvant, M. Bourget, S. Brisse et al., “Multilocus microsatellite markers for molecular typing of Candida glabrata: application to analysis of genetic relationships between bloodstream and digestive system isolates,” Journal of Clinical Microbiology, vol. 48, no. 11, pp. 4028–4034, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. B. A. Lasker, G. Butler, and T. J. Lott, “Molecular genotyping of Candida parapsilosis group I clinical isolates by analysis of polymorphic microsatellite markers,” Journal of Clinical Microbiology, vol. 44, no. 3, pp. 750–759, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. R. Sabino, P. Sampaio, L. Rosado, D. A. Stevens, K. V. Clemons, and C. Pais, “New polymorphic microsatellite markers able to distinguish among Candida parapsilosis sensu stricto isolates,” Journal of Clinical Microbiology, vol. 48, no. 5, pp. 1677–1682, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. M. Erali, K. V. Voelkerding, and C. T. Wittwer, “High resolution melting applications for clinical laboratory medicine,” Experimental and Molecular Pathology, vol. 85, no. 1, pp. 50–58, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. S. Arancia, S. Sandini, F. De Bernardis, and D. Fortini, “Rapid, simple, and low-cost identification of Candida species using high-resolution melting analysis,” Diagnostic Microbiology and Infectious Disease, vol. 69, no. 3, pp. 283–285, 2011. View at Publisher · View at Google Scholar · View at Scopus
  83. J.-M. Costa, D. Garcia-Hermoso, M. Olivi et al., “Genotyping of Candida albicans using length fragment and high-resolution melting analyses together with minisequencing of a polymorphic microsatellite locus,” Journal of Microbiological Methods, vol. 80, pp. 306–309, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. S. Gago, B. Lorenzo, A. Gomez-Lopez, I. Cuesta, M. Cuenca-Estrella, and M. J. Buitrago, “Analysis of strain relatedness using High Resolution Melting in a case of recurrent candiduria,” BMC Microbiology, vol. 13, article 13, 2013. View at Publisher · View at Google Scholar