About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 924870, 9 pages
http://dx.doi.org/10.1155/2013/924870
Research Article

Protective Effect of Spin-Labeled 1-Ethyl-1-nitrosourea against Oxidative Stress in Liver Induced by Antitumor Drugs and Radiation

1Department of Chemistry and Biochemistry, Faculty of Medicine, Trakia University, Armeiska Street 11, 6000 Stara Zagora, Bulgaria
2Department of Physiology, Pathophysiology and Pharmacology, Faculty of Medicine, Trakia University, Armeiska Street 11, 6000 Stara Zagora, Bulgaria
3Laboratory of Oncopharmacology, National Cancer Institute, 1756 Sofia, Bulgaria

Received 22 May 2013; Revised 19 August 2013; Accepted 20 August 2013

Academic Editor: Wilson João Cunico Filho

Copyright © 2013 V. Gadjeva et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. B. Grochow, “Covalent DNA-binding drugs,” in The Chemotherapy Source Book, M. C. Perry, Ed., pp. 192–208, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 2001.
  2. C. H. Takimoto and E. Calvo, “Principles of oncologic pharmacotherapy,” in Cancer Management: A Multidisciplinary Approach, R. Pazdur, L. D. Wagman, K. A. Camphausen, and W. J. Hoskins, Eds., F. A. Davis, Philadelphia, Pa, USA, 11th edition, 2008.
  3. B. Manoury, S. Nennan, O. Leclerc et al., “The absence of reactive oxygen species production protects mice against bleomycin-induced pulmonary fibrosis,” Respiratory Research, vol. 6, article 6, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Wai-Minga, R. Mark, and M. R. Montgomery, “Bleomycin toxicity: alterations in oxidative metabolism in lung and liver microsomal fractions,” Biochemical Pharmacology, vol. 29, no. 24, pp. 3239–3244, 1980. View at Publisher · View at Google Scholar · View at Scopus
  5. S. M. Hecht, “Bleomycin: new perspectives on the mechanism of action,” Journal of Natural Products, vol. 63, no. 1, pp. 158–168, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. K. L. Malisza and B. B. Hasinoff, “Doxorubicin reduces the iron(III) complexes of the hydrolysis products of the antioxidant cardioprotective agent dexrazoxane (ICRF-187) and produces hydroxyl radicals,” Archives of Biochemistry and Biophysics, vol. 316, no. 2, pp. 680–688, 1995. View at Publisher · View at Google Scholar · View at Scopus
  7. C. W. Moore and J. B. Little, “Rapid and slow DNA rejoining in nondividing human diploid fibroblasts treated with bleomycin and ionizing radiation,” Cancer Research, vol. 45, no. 5, pp. 1982–1986, 1985. View at Scopus
  8. B. D. Cheson, “Pharmacology of cancer chemotherapy: miscellaneous chemotherapeutic agents,” in Cancer Principles and Practice of Oncology, pp. 452–459, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 2001.
  9. G. R. Thompson, J. R. Baker, R. W. Fleischman et al., “Preclinical toxicologic evaluation of bleomycin (NSC 125 066), a new antitumor antibiotic,” Toxicology and Applied Pharmacology, vol. 22, no. 4, pp. 544–555, 1972. View at Scopus
  10. S. Y. Saad, T. A. Najjar, and A. C. Al-Rikabi, “The preventive role of deferoxamine against acute doxorubicin-induced cardiac, renal and hepatic toxicity in rats,” Pharmacological Research, vol. 43, no. 3, pp. 211–218, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. R. V. T. Santos, M. L. Batirsta Jr, E. C. Caperuto, and L. F. B. P. C. Rosa, “Chronic supplementation of creatine and vitamins C and E increases survival and improves biochemical parameters after doxorubicin treatment in rats,” Clinical and Experimental Pharmacology and Physiology, vol. 34, no. 12, pp. 1294–1299, 2007.
  12. R. Dillon, G. M. Hirschfield, M. E. D. Allison, and K. P. Rege, “Fatal reactivation of hepatitis B after chemotherapy for lymphoma,” British Medical Journal, vol. 337, article a423, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Kalender, M. Yel, and S. Kalender, “Doxorubicin hepatotoxicity and hepatic free radical metabolism in rats: the effects of vitamin E and catechin,” Toxicology, vol. 209, no. 1, pp. 39–45, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. G. V. Karpova, T. I. Fomina, T. V. Vetoshkina, T. I. Dubskaia, L. A. Ermolaeva, and A. A. Churin, “Hepatotoxicity of antineoplastic agents,” Vestnik Rossiǐskoǐ Akademii Meditsinskikh Nauk, no. 11, pp. 17–20, 2009. View at Scopus
  15. K. L. Koenig, R. E. Goans, R. J. Hatchett et al., “Medical treatment of radiological casualties: current concepts,” Annals of Emergency Medicine, vol. 45, no. 6, pp. 643–652, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. J. S. Tobias, “Clinical practice of radiotherapy,” The Lancet, vol. 339, no. 8786, pp. 159–163, 1991. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Agrawal, D. Chandra, and R. K. Kale, “Radiation induced oxidative stress: II studies in liver as a distant organ of tumor bearing mice,” Molecular and Cellular Biochemistry, vol. 224, no. 1-2, pp. 9–17, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. P. A. Riley, “Free radicals in biology: oxidative stress and the effects of ionizing radiation,” International Journal of Radiation Biology, vol. 65, no. 1, pp. 27–33, 1994. View at Scopus
  19. M. E. C. Robbins and W. Zhao, “Chronic oxidative stress and radiation-induced late normal tissue injury: a review,” International Journal of Radiation Biology, vol. 80, no. 4, pp. 251–259, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. M. A. Abd El-Aziz, A. I. Othman, M. Amer, and M. A. El-Missiry, “Potential protective role of angiotensin-converting enzyme inhibitors captopril and enalapril against adriamycin-induced acute cardiac and hepatic toxicity in rats,” Journal of Applied Toxicology, vol. 21, no. 6, pp. 469–473, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Injac, M. Perse, N. Obermajer et al., “Potential hepatoprotective effects of fullerenol C60(OH)24 in doxorubicin-induced hepatotoxicity in rats with mammary carcinomas,” Biomaterials, vol. 29, no. 24-25, pp. 3451–3460, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Yagmurca, O. Bas, H. Mollaoglu et al., “Protective effects of erdosteine on doxorubicin-induced hepatotoxicity in rats,” Archives of Medical Research, vol. 38, no. 4, pp. 380–385, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. J. B. Mitchell, M. C. Krishna, P. Kuppusamy, J. A. Cook, and A. Russo, “Protection against oxidative stress by nitroxides,” Experimental Biology and Medicine, vol. 226, no. 7, pp. 620–621, 2001. View at Scopus
  24. C. T. Gnewuch and G. Sosnovsky, “A critical appraisal of the evolution of N-nitrosoureas as anticancer drugs,” Chemical Reviews, vol. 97, no. 3, pp. 829–1013, 1997. View at Scopus
  25. Z. Raikov, D. Todorov, and M. Ilarionova, “Synthesis and study of spin-labeled nitrosoureas,” Cancer Biochemistry Biophysics, vol. 7, no. 4, pp. 343–348, 1985. View at Scopus
  26. V. Gadjeva and Z. Raikov, “Syntheses and antitumor activity of 4-[N′-[N-(2-chloroethyl)-N-nitrosocarbamoyl]hydrazono]-2,2,6,6- tetramethylpiperidine-1-oxyl,” Pharmazie, vol. 54, no. 3, pp. 231–232, 1999. View at Scopus
  27. V. Gadjeva, G. Lazarova, and A. Zheleva, “Spin labeled antioxidants protect bacteria against the toxicity of alkylating antitumor drug CCNU,” Toxicology Letters, vol. 144, no. 3, pp. 289–294, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. V. Gadzheva, K. Ichimori, H. Nakazawa, and Z. Raikov, “Superoxide scavenging activity of spin-labeled nitrosourea and triazene derivatives,” Free Radical Research, vol. 21, no. 3, pp. 177–186, 1994. View at Scopus
  29. V. Gadjeva, D. Kuchukova, A. Tolekova, and S. Tanchev, “Beneficial effects of spin-labelled nitrosourea on CCNU-induced oxidative stress in rat blood compared with vitamin E,” Pharmazie, vol. 60, no. 7, pp. 530–532, 2005. View at Scopus
  30. V. Gadjeva, A. Tolekova, and M. Vasileva, “Effect of the spin-labelled 1-ethyl-1-nitrosourea on CCNU-induced oxidative liver injury,” Pharmazie, vol. 62, no. 8, pp. 608–613, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. V. Gadjeva and R. Koldamova, “Spin-labeled 1-alkyl-1-nitrosourea synergists of antitumor antibiotics,” Anti-Cancer Drug Design, vol. 16, no. 4-5, pp. 247–253, 2001. View at Scopus
  32. R. S. Geran, N. H. Greenberg, M. M. Macdonald, A. M. Schumacher, and B. J. Abbott, “Protocols for screening chemical agents and natural products against animal tumors and other biological systems,” Cancer Chemotherapy Reports, vol. 13, no. 2, pp. 1–87, 1972.
  33. H. H. Draper and M. Hadley, “Malondialdehyde determination as index of lipid peroxidation,” Methods in Enzymology, vol. 186, pp. 421–431, 1990. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Sun, L. W. Oberley, and Y. Li, “A simple method for clinical assay of superoxide dismutase,” Clinical Chemistry, vol. 34, no. 3, pp. 497–500, 1988. View at Scopus
  35. R. F. Beers Jr. and I. W. Sizer, “A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase,” The Journal of biological chemistry, vol. 195, no. 1, pp. 133–140, 1952. View at Scopus
  36. K. M. Miranda, M. G. Espey, and D. A. Wink, “A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite,” Nitric Oxide, vol. 5, no. 1, pp. 62–71, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. B. A. White, M. M. Erickson, and S. C. Stevens, Chemistry for Medical Technologists, Mosby, Saint Louis, Mo, USA, 3rd edition, 1970.
  38. M. Torun, S. Yardim, A. Gonenc, H. Sargin, A. Menevse, and B. Simsek, “Serum β-carotene, vitamin E, vitamin C and malondialdehyde levels in several types of cancer,” Journal of Clinical Pharmacy and Therapeutics, vol. 20, no. 5, pp. 259–263, 1995. View at Scopus
  39. V. Jacevic, V. Djordjevic-Milic, V. Dragojevic-Simic, N. Radic, B. Govedarica, S. Dobric, et al., “Protective effects of fullerenol C60(OH)24 on doxorubicin-induced hepatotoxicity in rats: pathohistological study,” Toxicology Letters, vol. 172, supplement 7, S146 pages, 2007. View at Publisher · View at Google Scholar
  40. V. G. Desai, A. Aidoo, J. Li, L. E. Lyn-Cook, D. A. Casciano, and R. J. Feuers, “Effects of bleomycin on liver antioxidant enzymes and the electron transport system from ad libitum-fed and dietary-restricted female and male Fischer 344 rats,” Nutrition and Cancer, vol. 36, no. 1, pp. 42–51, 2000. View at Scopus
  41. G. Gurujeyalakshmi, Y. Wang, and S. N. Giri, “Suppression of bleomycin-induced nitric oxide production in mice by taurine and niacin,” Nitric Oxid, vol. 4, no. 4, pp. 399–411, 2000. View at Publisher · View at Google Scholar · View at Scopus
  42. L. C. McKinney, E. M. Aquilla, D. Coffin, D. A. Wink, and Y. Vodovotz, “Ionizing radiation potentiates the induction of nitric oxide synthase by IFN-γ and/or LPS in murine macrophage cell lines: role of TNF-α,” Journal of Leukocyte Biology, vol. 64, no. 4, pp. 459–466, 1998. View at Scopus
  43. H. Rubbo, R. Radi, M. Trujillo et al., “Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation. Formation of novel nitrogen-containing oxidized lipid derivatives,” Journal of Biological Chemistry, vol. 269, no. 42, pp. 26066–26075, 1994. View at Scopus