About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 926309, 6 pages
http://dx.doi.org/10.1155/2013/926309
Research Article

Antituberculosis: Synthesis and Antimycobacterial Activity of Novel Benzimidazole Derivatives

1Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
2New Drug Discovery Research, Department of Medicinal Chemistry, Alwar Pharmacy College, Alwar, Rajasthan 301030, India
3New Drug Discovery Research, Department of Medicinal Chemistry, Sunrise University, Alwar, Rajasthan 301030, India
4Centre of Excellence for Research in AIDS (CERiA), University of Malaya, 50603 Kuala Lumpur, Malaysia
5School of Chemical Science, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
6Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, Saudi Arabia

Received 17 April 2013; Revised 24 July 2013; Accepted 29 July 2013

Academic Editor: Stelvio M. Bandiera

Copyright © 2013 Yeong Keng Yoon et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A total of seven novel benzimidazoles were synthesized by a 4-step reaction starting from 4-fluoro-3-nitrobenzoic acid under relatively mild reaction conditions. The synthesized compounds were screened for their antimycobacterial activity against M. tuberculosis H37Rv (MTB-H37Rv) and INH-resistant M. tuberculosis (INHR-MTB) strains using agar dilution method. Three of them displayed good activity with MIC of less than 0.2 μM. Compound ethyl 1-(2-(4-(4-(ethoxycarbonyl)-2-aminophenyl)piperazin-1-yl)ethyl)-2-(4-(5-(4-fluorophenyl)pyridin-3-ylphenyl-1H-benzo[d]imidazole-5-carboxylate (5g) was found to be the most active with MIC of 0.112 μM against MTB-H37Rv and 6.12 μM against INHR-MTB, respectively.