About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 926942, 13 pages
http://dx.doi.org/10.1155/2013/926942
Research Article

2-Heptyl-Formononetin Increases Cholesterol and Induces Hepatic Steatosis in Mice

1Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
2Department of Chemistry, Faculty of Science, University of Copenhagen, 1870 Frederiksberg C, Denmark
3Department of Food Science, Faculty of Science, University of Copenhagen, 1870 Frederiksberg C, Denmark
4Department of Biology, Faculty of Science, University of Copenhagen, 2200 Copenhagen N, Denmark
5Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark

Received 2 January 2013; Revised 15 March 2013; Accepted 26 March 2013

Academic Editor: Kazim Husain

Copyright © 2013 Charlotte Andersen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. R. Cederroth and S. Nef, “Soy, phytoestrogens and metabolism: a review,” Molecular and Cellular Endocrinology, vol. 304, no. 1-2, pp. 30–42, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. M. S. Kurzer and X. Xu, “Dietary phytoestrogens,” Annual Review of Nutrition, vol. 17, pp. 353–381, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Ørgaard and L. Jensen, “The effects of soy isoflavones on obesity,” Experimental Biology and Medicine, vol. 233, no. 9, pp. 1066–1080, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Usui, “Pharmaceutical prospects of phytoestrogens,” Endocrine Journal, vol. 53, no. 1, pp. 7–20, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. R. P. Patel and S. Barnes, “Isoflavones and PPAR signaling: a critical target in cardiovascular, metastatic, and metabolic disease,” PPAR Research, Article ID 153252, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Yalniz, I. H. Bahcecioglu, N. Kuzu et al., “Preventive role of genistein in an experimental non-alcoholic steatohepatitis model,” Journal of Gastroenterology and Hepatology, vol. 22, no. 11, pp. 2009–2014, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Taku, K. Umegaki, Y. Sato, Y. Taki, K. Endoh, and S. Watanabe, “Soy isoflavones lower serum total and LDL cholesterol in humans: a meta-analysis of 11 randomized controlled trials,” The American Journal of Clinical Nutrition, vol. 85, no. 4, pp. 1148–1156, 2007. View at Scopus
  8. X. G. Zhuo, M. K. Melby, and S. Watanabe, “Soy isoflavone intake lowers serum LDL cholesterol: a meta-analysis of 8 randomized controlled trials in humans,” The Journal of Nutrition, vol. 134, no. 9, pp. 2395–2400, 2004. View at Scopus
  9. M. H. Kim, J. S. Park, J. W. Jung, K. W. Byun, K. S. Kang, and Y. S. Lee, “Daidzein supplementation prevents non-alcoholic fatty liver disease through alternation of hepatic gene expression profiles and adipocyte metabolism,” International Journal of Obesity, vol. 35, pp. 1019–1030, 2011. View at Publisher · View at Google Scholar
  10. M. H. Kim, K. S. Kang, and Y. S. Lee, “The inhibitory effect of genistein on hepatic steatosis is linked to visceral adipocyte metabolism in mice with diet-induced non-alcoholic fatty liver disease,” British Journal of Nutrition, vol. 104, no. 9, pp. 1333–1342, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Penza, C. Montani, A. Romani et al., “Genistein affects adipose tissue deposition in a dose-dependent and gender-specific manner,” Endocrinology, vol. 147, no. 12, pp. 5740–5751, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Y. Yang, S. J. Lee, H. W. Park, and Y. S. Cha, “Effect of genistein with carnitine administration on lipid parameters and obesity in C57B1/6J mice fed a high-fat diet,” Journal of Medicinal Food, vol. 9, no. 4, pp. 459–467, 2006. View at Scopus
  13. S. S. Mohamed, P. Nallasamy, P. Muniyandi, V. Periyasami, and A. Carani Venkatraman, “Genistein improves liver function and attenuates non-alcoholic fatty liver disease in a rat model of insulin resistance,” Journal of diabetes, vol. 1, no. 4, pp. 278–287, 2009. View at Scopus
  14. A. Crespillo, M. Alonso, M. Vida et al., “Reduction of body weight, liver steatosis and expression of stearoyl-CoA desaturase 1 by the isoflavone daidzein in diet-induced obesity,” British Journal of Pharmacology, vol. 164, pp. 1899–1915, 2011. View at Publisher · View at Google Scholar
  15. Y. M. Lee, J. S. Choi, M. H. Kim, M. H. Jung, Y. S. Lee, and J. Song, “Effects of dietary genistein on hepatic lipid metabolism and mitochondrial function in mice fed high-fat diets,” Nutrition, vol. 22, no. 9, pp. 956–964, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. N. Yumiko, K. Akiko, T. Yukari, I. Susumu, and T. Yasuhide, “Content and composition of isoflavonoids in mature or immature beans and bean sprouts consumed in Japan,” Journal of Health Science, vol. 47, pp. 394–406, 2001. View at Publisher · View at Google Scholar
  17. G. Pakalapati, L. Li, N. Gretz, E. Koch, and M. Wink, “Influence of red clover (Trifolium pratense) isoflavones on gene and protein expression profiles in liver of ovariectomized rats,” Phytomedicine, vol. 16, no. 9, pp. 845–855, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Shen, M. H. Liu, T. Y. Ng, Y. H. Chan, and E. L. Yong, “Differential effects of isoflavones, from Astragalus Membranaceus and Pueraria Thomsonii, on the activation of PPARα, PPARγ, and adipocyte differentiation in vitro,” The Journal of Nutrition, vol. 136, no. 4, pp. 899–905, 2006. View at Scopus
  19. S. Zhang, X. Tang, J. Tian et al., “Cardioprotective effect of sulphonated formononetin on acute myocardial infarction in rats,” Basic and Clinical Pharmacology and Toxicology, vol. 108, no. 6, pp. 390–395, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. D. S. Pedersen and C. Rosenbohm, “Dry column vacuum chromatography,” Synthesis, no. 16, pp. 2431–2434, 2001. View at Scopus
  21. S. A. Schreyer, D. L. Wilson, and R. C. Leboeuf, “C57BL/6 mice fed high fat diets as models for diabetes-accelerated atherosclerosis,” Atherosclerosis, vol. 136, no. 1, pp. 17–24, 1998. View at Publisher · View at Google Scholar · View at Scopus
  22. J. S. Kang, W. K. Lee, C. W. Lee et al., “Improvement of high-fat diet-induced obesity by a mixture of red grape extract, soy isoflavone and l-carnitine: implications in cardiovascular and non-alcoholic fatty liver diseases,” Food and Chemical Toxicology, vol. 49, no. 9, pp. 2453–2458, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. P. A. Flecknell, Laboratory Animal Anaesthesia, Academic Press, London, UK, 1996.
  24. S. D. Christensen, L. F. Mikkelsen, J. J. Fels, T. B. Bodvarsdóttir, and A. K. Hansen, “Quality of plasma sampled by different methods for multiple blood sampling in mice,” Laboratory Animals, vol. 43, no. 1, pp. 65–71, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Dahl, K. Buschard, D. X. Gram, A. J. F. D'Apice, and A. K. Hansen, “Glucose intolerance in a xenotransplantation model: studies in alpha-gal knockout mice,” APMIS, vol. 114, no. 11, pp. 805–811, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Ovreås, L. Forney, F. L. Daae, and V. Torsvik, “Distribution of bacterioplankton in meromictic lake saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA,” Applied and Environmental Microbiology, vol. 63, no. 9, pp. 3367–3373, 1997. View at Scopus
  27. H. J. Flint, “Obesity and the gut microbiota,” Journal of Clinical Gastroenterology, vol. 45, pp. S128–S132, 2011. View at Publisher · View at Google Scholar
  28. S. Ae Park, M. S. Choi, S. Y. Cho et al., “Genistein and daidzein modulate hepatic glucose and lipid regulating enzyme activities in C57BL/KsJ-db/db mice,” Life Sciences, vol. 79, no. 12, pp. 1207–1213, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. M. S. Choi, U. J. Jung, J. Yeo, M. J. Kim, and M. K. Lee, “Genistein and daidzein prevent diabetes onset by elevating insulin level and altering hepatic gluconeogenic and lipogenic enzyme activities in non-obese diabetic (NOD) mice,” Diabetes/Metabolism Research and Reviews, vol. 24, no. 1, pp. 74–81, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. J. Moon, X. Wang, and M. E. Morris, “Dietary flavonoids: effects on xenobiotic and carcinogen metabolism,” Toxicology in Vitro, vol. 20, no. 2, pp. 187–210, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. E. Fabbrini, S. Sullivan, and S. Klein, “Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications,” Hepatology, vol. 51, no. 2, pp. 679–689, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. J. W. Wu, S. P. Wang, F. Alvarez et al., “Deficiency of liver adipose triglyceride lipase in mice causes progressive hepatic steatosis,” Hepatology, vol. 54, no. 1, pp. 122–132, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. E. S. Shin, H. H. Lee, S. Y. Cho, H. W. Park, S. J. Lee, and T. R. Lee, “Genistein downregulates SREBP-1 regulated gene expression by inhibiting site-1 protease expression in HepG2 cells,” The Journal of Nutrition, vol. 137, no. 5, pp. 1127–1131, 2007.
  34. S. Kim, I. Sohn, Y. S. Lee, and Y. S. Lee, “Hepatic gene expression profiles are altered by genistein supplementation in mice with diet-induced obesity,” The Journal of Nutrition, vol. 135, no. 1, pp. 33–41, 2005. View at Scopus
  35. M. J. Ronis, Y. Chen, J. Badeaux, and T. M. Badger, “Dietary soy protein isolate attenuates metabolic syndrome in rats via effects on PPAR, LXR, and SREBP signaling,” The Journal of Nutrition, vol. 139, no. 8, pp. 1431–1438, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Minehira, S. G. Young, C. J. Villanueva et al., “Blocking VLDL secretion causes hepatic steatosis but does not affect peripheral lipid stores or insulin sensitivity in mice,” Journal of Lipid Research, vol. 49, no. 9, pp. 2038–2044, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. F. Rodríguez-Sanabria, A. Rull, G. Aragonès et al., “Differential response of two models of genetically modified mice fed with high fat and cholesterol diets: relationship to the study of non-alcoholic steatohepatitis,” Molecular and Cellular Biochemistry, vol. 343, no. 1-2, pp. 59–66, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. N. M. Borradaile, L. E. De Dreu, L. J. Wilcox, J. Y. Edwards, and M. W. Huff, “Soya phytoestrogens, genistein and daidzein, decrease apolipoprotein B secretion from HepG2 cells through multiple mechanisms,” Biochemical Journal, vol. 366, no. 2, pp. 531–539, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. H. J. Park, M. A. Della-Fera, D. B. Hausman, S. Rayalam, S. Ambati, and C. A. Baile, “Genistein inhibits differentiation of primary human adipocytes,” Journal of Nutritional Biochemistry, vol. 20, no. 2, pp. 140–148, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. K. Szkudelska, L. Nogowski, and T. Szkudelski, “Genistein affects lipogenesis and lipolysis in isolated rat adipocytes,” Journal of Steroid Biochemistry and Molecular Biology, vol. 75, no. 4-5, pp. 265–271, 2000. View at Publisher · View at Google Scholar · View at Scopus
  41. A. W. Harmon and J. B. Harp, “Differential effects of flavonoids on 3T3-L1 adipogenesis and lipolysis,” American Journal of Physiology, vol. 280, no. 4, pp. C807–C813, 2001. View at Scopus
  42. K. Kandulska, L. Nogowski, and T. Szkudelski, “Effect of some phytoestrogens on metabolism of rat adipocytes,” Reproduction Nutrition Development, vol. 39, no. 4, pp. 497–501, 1999. View at Scopus
  43. G. Ji, Q. Yang, J. Hao et al., “Anti-inflammatory effect of genistein on non-alcoholic steatohepatitis rats induced by high fat diet and its potential mechanisms,” International Immunopharmacology, vol. 11, no. 6, pp. 762–768, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. A. P. Rolo, J. S. Teodoro, and C. M. Palmeira, “Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis,” Free Radical Biology and Medicine, vol. 52, no. 1, pp. 59–69, 2012. View at Publisher · View at Google Scholar
  45. C. E. Rüfer and S. E. Kulling, “Antioxidant activity of isoflavones and their major metabolites using different in vitro assays,” Journal of Agricultural and Food Chemistry, vol. 54, no. 8, pp. 2926–2931, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. L. Qiu, H. Ye, L. Chen, Y. Hong, F. Zhong, and T. Zhang, “Red clover extract ameliorates dyslipidemia in streptozotocin-induced diabetic C57BL/6 mice by activating hepatic PPARalpha,” Phytotherapy Research, vol. 26, no. 6, pp. 860–864, 2011. View at Publisher · View at Google Scholar
  47. A. A. Pendse, J. M. Arbones-Mainar, L. A. Johnson, M. K. Altenburg, and N. Maeda, “Apolipoprotein E knock-out and knock-in mice: atherosclerosis, metabolic syndrome, and beyond,” Journal of lipid research, vol. 50, pp. S178–182, 2009. View at Publisher · View at Google Scholar · View at Scopus