About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 928271, 8 pages
http://dx.doi.org/10.1155/2013/928271
Research Article

High-Dose, but Not Low-Dose, Aspirin Impairs Anticontractile Effect of Ticagrelor following ADP Stimulation in Rat Tail Artery Smooth Muscle Cells

1Department of Pharmacology and Therapeutics, Collegium Medicum, Nicolaus Copernicus University, 9 Sklodowskiej-Curie Street, 85-094 Bydgoszcz, Poland
2Department of Cardiology and Internal Medicine, Collegium Medicum, Nicolaus Copernicus University, 9 Sklodowskiej-Curie Street, 85-094 Bydgoszcz, Poland
3Sinai Center for Thrombosis Research, Sinai Hospital of Baltimore, 2401 West Belvedere Avenue, Baltimore, MD 21215, USA
4Department of Pediatric Hematology and Oncology, Collegium Medicum, Nicolaus Copernicus University, 9 Sklodowskiej-Curie Street, 85-094 Bydgoszcz, Poland
5Division of Cardiology, Department of Internal Medicine, Gyeongsang National University Hospital, 79 Gangnam-ro, Jinju, Gyeongsangnam-do 660-702, Republic of Korea

Received 2 March 2013; Accepted 13 May 2013

Academic Editor: Jeffrey L. Anderson

Copyright © 2013 Grzegorz Grześk et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. D. Wiviott, E. Braunwald, C. H. McCabe et al., “Prasugrel versus clopidogrel in patients with acute coronary syndromes,” The New England Journal of Medicine, vol. 357, no. 20, pp. 2001–2015, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. L. Wallentin, R. C. Becker, A. Budaj et al., “Ticagrelor versus clopidogrel in patients with acute coronary syndromes,” The New England Journal of Medicine, vol. 361, no. 11, pp. 1045–1057, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. E. P. Navarese, M. Verdoia, A. Schaffer et al., “Ischaemic and bleeding complications with new, compared to standard, ADP-antagonist regimens in acute coronary syndromes: a meta-analysis of randomized trials,” QJM, vol. 104, no. 7, Article ID hcr069, pp. 561–569, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. E. P. Navarese, A. Buffon, M. Kozinski et al., “A critical overview on ticagrelor in acute coronary syndromes,” Quarterly Journal of Medicine, vol. 106, no. 2, pp. 105–115, 2013. View at Publisher · View at Google Scholar
  5. P. G. Steg, S. K. James, D. Atar et al., “ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the Task Force on the management of ST-segment elevation acute myocardial infarction of the European Society of Cardiology (ESC),” European Heart Journal, vol. 33, no. 20, pp. 2569–2619, 2012. View at Publisher · View at Google Scholar
  6. H. Jneid, J. L. Anderson, R. S. Wright et al., “2012 ACCF/AHA focused update of the guideline for the management of patients with unstable angina/Non-ST-elevation myocardial infarction (updating the 2007 guideline and replacing the 2011 focused update): a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines,” Journal of the American College of Cardiology, vol. 60, no. 7, pp. 645–681, 2012. View at Publisher · View at Google Scholar
  7. P. A. Gurbel, K. P. Bliden, K. Butler et al., “Randomized double-blind assessment of the ONSET and OFFSET of the antiplatelet effects of ticagrelor versus clopidogrel in patients with stable coronary artery disease: the ONSET/OFFSET study,” Circulation, vol. 120, no. 25, pp. 2577–2585, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. V. L. Serebruany, “Mortality benefit in PLATO cannot be explained by antiplatelet properties of ticagrelor,” Cardiology, vol. 117, no. 3, pp. 231–233, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Wihlborg, L. Wang, O. Ö. Braun et al., “ADP receptor P2Y12 is expressed in vascular smooth muscle cells and stimulates contraction in human blood vessels,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 10, pp. 1810–1815, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Grzesk, M. Kozinski, E. P. Navarese et al., “Ticagrelor, but not clopidogrel and prasugrel, prevents ADP-induced vascular smooth muscle cell contraction: a placebo-controlled study in rats,” Thrombosis Research, vol. 17, no. 2, pp. 164–172, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Högberg, H. Svensson, R. Gustafsson, A. Eyjolfsson, and D. Erlinge, “The reversible oral P2Y12 antagonist AZD6140 inhibits ADP-induced contractions in murine and human vasculature,” International Journal of Cardiology, vol. 142, no. 2, pp. 187–192, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. J. J. van Giezen, J. Sidaway, P. Glaves, I. Kirk, and J. A. Björkman, “Ticagrelor inhibits adenosine uptake in vitro and enhances adenosine-mediated hyperemia responses in a canine model,” Journal of Cardiovascular Pharmacology Therapy, vol. 17, no. 2, pp. 164–172, 2012.
  13. J. Öhman, R. Kudira, S. Albinsson, B. Olde, and D. Erlinge, “Ticagrelor induces adenosine triphosphate release from human red blood cells,” Biochemical and Biophysical Research Communications, vol. 418, no. 4, pp. 754–758, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. K. W. Mahaffey, D. M. Wojdyla, K. Carroll et al., “Ticagrelor compared with clopidogrel by geographic region in the Platelet Inhibition and Patient Outcomes (PLATO) Trial,” Circulation, vol. 124, no. 5, pp. 544–554, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. AstraZeneca, Brilinta REMS Document, NDA 22-433, 2011, http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm263964.htm.
  16. “Guide for the care and use of laboratory animals,” Office of Science and Health Reports (NIH) 85-23, DRR/NIH, Bethesdo, Md,USA, 1985.
  17. F. R. C. Giachini, D. A. Osmond, S. Zhang et al., “Clopidogrel, independent of the vascular P2Y12 receptor, improves arterial function in small mesenteric arteries from AngII-hypertensive rats,” Clinical Science, vol. 118, no. 7, pp. 463–471, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. J. M. van Rossum, “Cumulative dose-response curves. II. Technique for the making of dose-response curves in isolated organs and the evaluation of drug parameters,” Archives Internationales de Pharmacodynamie et de Thérapie, vol. 143, pp. 299–330, 1963. View at Scopus
  19. J. E. Pope, J. J. Anderson, and D. T. Felson, “A meta-analysis of the effects of nonsteroidal anti-inflammatory drugs on blood pressure,” Archives of Internal Medicine, vol. 153, no. 4, pp. 477–484, 1993. View at Publisher · View at Google Scholar · View at Scopus
  20. A. G. Johnson, T. V. Nguyen, and R. O. Day, “Do nonsteroidal anti-inflammatory drugs affect blood pressure? A meta-analysis,” Annals of Internal Medicine, vol. 121, no. 4, pp. 289–300, 1994. View at Scopus
  21. L. E. Bautista and L. M. Vera, “Antihypertensive effects of aspirin: what is the evidence?” Current Hypertension Reports, vol. 12, no. 4, pp. 282–289, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. R. C. Hermida, D. E. Ayala, C. Calvo, and J. E. López, “Aspirin administered at bedtime, but not on awakening, has an effect on ambulatory blood pressure in hypertensive patients,” Journal of the American College of Cardiology, vol. 46, no. 6, pp. 975–983, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. R. C. Hermida, D. E. Ayala, C. Calvo et al., “Differing administration time-dependent effects of aspirin on blood pressure in dipper and non-dipper hypertensives,” Hypertension, vol. 46, no. 4, pp. 1060–1068, 2005. View at Scopus
  24. V. Leinonen, J. Varis, R. Vesalainen, J. Päivärinta, M. Sillanpää, and I. Kantola, “Low-dose acetylsalicylic acid and blood pressure control in drug-treated hypertensive patients,” European Journal of Cardiovascular Prevention and Rehabilitation, vol. 18, no. 1, pp. 136–140, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. F. Avanzini, G. Palumbo, C. Alli et al., “Effects of low-dose aspirin on clinic and ambulatory blood pressure in treated hypertensive patients,” American Journal of Hypertension, vol. 13, no. 6, pp. 611–616, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Zanchetti, L. Hansson, G. Leonetti et al., “Low-dose aspirin does not interfere with the blood pressure-lowering effects of antihypertensive therapy,” Journal of Hypertension, vol. 20, no. 5, pp. 1015–1022, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. J. J. Nawarskas, R. R. Townsend, M. D. Cirigliano, and S. A. Spinler, “Effect of aspirin on blood pressure in hypertensive patients taking enalapril or losartan,” American Journal of Hypertension, vol. 12, no. 8 I, pp. 784–789, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. T. D. Warner, S. Nylander, and C. Whatling, “Anti-platelet therapy: cyclo-oxygenase inhibition and the use of aspirin with particular regard to dual anti-platelet therapy,” British Journal of Clinical Pharmacology, vol. 72, no. 4, pp. 619–633, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Aldasoro, M. D. Mauricio, E. Serna et al., “Aspirin and COX-2inhibitor nimesulide potentiate adrenergic contractions of human gastroepiploic artery,” American Journal of Hypertension, vol. 20, no. 5, pp. 514–519, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Aldasoro, M. D. Mauricio, E. Serna et al., “Effects of aspirin, nimesulide, and SC-560 on vasopressin-induced contraction of human gastroepiploic artery and saphenous vein,” Critical Care Medicine, vol. 36, no. 1, pp. 193–197, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Taubert, R. Berkels, N. Grosser, H. Schröder, D. Gründemann, and E. Schömig, “Aspirin induces nitric oxide release from vascular endothelium: a novel mechanism of action,” British Journal of Pharmacology, vol. 143, no. 1, pp. 159–165, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. Z. Ying, F. R. C. Giachini, R. C. Tostes, and R. C. Webb, “Salicylates dilate blood vessels through inhibiting PYK2-mediated RhoA/Rho-kinase activation,” Cardiovascular Research, vol. 83, no. 1, pp. 155–162, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. G. A. FitzGerald, J. A. Oates, and J. Hawiger, “Endogenous biosynthesis of prostacyclin and thromboxane and platelet function during chronic administration of aspirin in man,” Journal of Clinical Investigation, vol. 71, no. 3, pp. 676–688, 1983. View at Scopus
  34. B. B. Weksler, S. B. Pett, and D. Alonso, “Differential inhibition by aspirin of vascular and platelet prostaglandin synthesis in atherosclerotic patients,” The New England Journal of Medicine, vol. 308, no. 14, pp. 800–805, 1983. View at Scopus
  35. G. Davi, N. Custro, and S. Novo, “The effect of two low doses of aspirin on whole blood thromboxane and prostacyclin generation in healthy subjects,” Thrombosis and Haemostasis, vol. 50, no. 3, pp. 669–670, 1983. View at Scopus
  36. S. J. Duffy, S. F. Castle, R. W. Harper, and I. T. Meredith, “Contribution of vasodilator prostanoids and nitric oxide to resting flow, metabolic vasodilation, and flow-mediated dilation in human coronary circulation,” Circulation, vol. 100, no. 19, pp. 1951–1957, 1999. View at Scopus
  37. P. L. Friedman, E. J. Brown Jr., and S. Gunther, “Coronary vasoconstrictor effect of indomethacin in patients with coronary-artery disease,” The New England Journal of Medicine, vol. 305, no. 20, pp. 1171–1175, 1981. View at Scopus
  38. R. D. Rudic, D. Brinster, Y. Cheng et al., “COX-2-derived prostacyclin modulates vascular remodeling,” Circulation Research, vol. 96, no. 12, pp. 1240–1247, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. K. M. Egan, M. Wang, S. Fries et al., “Cyclooxygenases, thromboxane, and atherosclerosis: plaque destabilization by cyclooxygenase-2 inhibition combined with thromboxane receptor antagonism,” Circulation, vol. 111, no. 3, pp. 334–342, 2005.
  40. P. C. J. Armstrong, P. D. Leadbeater, M. V. Chan et al., “In the presence of strong P2Y12 receptor blockade, aspirin provides little additional inhibition of platelet aggregation,” Journal of Thrombosis and Haemostasis, vol. 9, no. 3, pp. 552–561, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. N. S. Kirkby, P. D. M. Leadbeater, M. V. Chan, S. Nylander, J. A. Mitchell, and T. D. Warner, “Antiplatelet effects of aspirin vary with level of P2Y12 receptor blockade supplied by either ticagrelor or prasugrel,” Journal of Thrombosis and Haemostasis, vol. 9, no. 10, pp. 2103–2105, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. K. Bhavaraju, A. Georgakis, J. Jin et al., “Antagonism of P2Y12 reduces physiological thromboxane levels,” Platelets, vol. 21, no. 8, pp. 604–609, 2010. View at Publisher · View at Google Scholar · View at Scopus