About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 930962, 10 pages
http://dx.doi.org/10.1155/2013/930962
Research Article

Developing a Clinical-Grade Cryopreservation Protocol for Human Testicular Tissue and Cells

PrimeGen Biotech LLC, 213 Technology Drive, Irvine, CA 92618, USA

Received 27 October 2012; Revised 29 November 2012; Accepted 2 December 2012

Academic Editor: Irma Virant-Klun

Copyright © 2013 Jason Pacchiarotti et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. E. Orwig and S. Schlatt, “Cryopreservation and transplantation of spermatogonia and testicular tissue for preservation of male fertility,” Journal of the National Cancer Institute, no. 34, pp. 51–56, 2005. View at Scopus
  2. M. F. H. Brougham, C. J. H. Kelnar, R. M. Sharpe, and W. H. B. Wallace, “Male fertility following childhood cancer: current concepts and future therapies,” Asian Journal of Andrology, vol. 5, no. 4, pp. 325–337, 2003. View at Scopus
  3. C. Wyns, M. Curaba, B. Vanabelle, A. van Langendonckt, and J. Donnez, “Options for fertility preservation in prepubertal boys,” Human Reproduction Update, vol. 16, no. 3, pp. 312–328, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. M. von Wolff, J. Donnez, O. Hovatta et al., “Cryopreservation and autotransplantation of human ovarian tissue prior to cytotoxic therapy—a technique in its infancy but already successful in fertility preservation,” European Journal of Cancer, vol. 45, no. 9, pp. 1547–1553, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. S. J. Silber, “Ovary cryopreservation and transplantation for fertility preservation,” Molecular Human Reproduction, vol. 18, no. 2, pp. 59–67, 2012.
  6. J. S. Jeruss and T. K. Woodruff, “Preservation of fertility in patients with cancer,” The New England Journal of Medicine, vol. 360, no. 9, pp. 858–911, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. P. F. Brook, J. A. Radford, S. M. Shalet, A. D. Joyce, and R. G. Gosden, “Isolation of germ cells from human testicular tissue for low temperature storage and autotransplantation,” Fertility and Sterility, vol. 75, no. 2, pp. 269–274, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. J. B. Stukenborg, S. Schlatt, M. Simoni et al., “New horizons for in vitro spermatogenesis? An update on novel three-dimensional culture systems as tools for meiotic and post-meiotic differentiation of testicular germ cells,” Molecular Human Reproduction, vol. 15, no. 9, pp. 521–529, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. R. L. Brinster and M. Nagano, “Spermatogonial stem cell transplantation, cryopreservation and culture,” Seminars in Cell and Developmental Biology, vol. 9, no. 4, pp. 401–409, 1998. View at Scopus
  10. F. Izadyar, J. J. Matthijs-Rijsenbilt, K. den Ouden, L. B. Creemers, H. Woelders, and D. G. de Rooij, “Development of a cryopreservation protocol for type A spermatogonia,” Journal of Andrology, vol. 23, no. 4, pp. 537–545, 2002. View at Scopus
  11. V. Keros, K. Hultenby, B. Borgström, M. Fridström, K. Jahnukainen, and O. Hovatta, “Methods of cryopreservation of testicular tissue with viable spermatogonia in pre-pubertal boys undergoing gonadotoxic cancer treatment,” Human Reproduction, vol. 22, no. 5, pp. 1384–1395, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. V. Keros, B. Rosenlund, K. Hultenby, L. Aghajanova, L. Levkov, and O. Hovatta, “Optimizing cryopreservation of human testicular tissue: comparison of protocols with glycerol, propanediol and dimethylsulphoxide as cryoprotectants,” Human Reproduction, vol. 20, no. 6, pp. 1676–1687, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. D. E. Pegg, “The relevance of ice crystal formation for the cryopreservation of tissues and organs,” Cryobiology, vol. 60, no. 3, supplement, pp. S36–S44, 2010. View at Scopus
  14. C. B. Maki, J. Pacchiarotti, T. Ramos et al., “Phenotypic and molecular characterization of spermatogonial stem cells in adult primate testes,” Human Reproduction, vol. 24, no. 6, pp. 1480–1491, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Izadyar, J. Wong, C. Maki et al., “Identification and characterization of repopulating spermatogonial stem cells from the adult human testis,” Human Reproduction, vol. 26, no. 6, pp. 1296–1306, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. X. Ma, Y. Dong, M. M. Matzuk, and T. R. Kumar, “Targeted disruption of luteinizing hormone β-subunit leads to hypogonadism, defects in gonadal steroidogenesis, and infertility,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 49, pp. 17294–17299, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. D. H. Castrillon, B. J. Quade, T. Y. Wang, C. Quigley, and C. P. Crum, “The human VASA gene is specifically expressed in the germ cell lineage,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 17, pp. 9585–9590, 2000. View at Scopus
  18. G. Bahadur and D. Ralph, “Gonadal tissue cryopreservation in boys with paediatric cancers,” Human Reproduction, vol. 14, no. 1, pp. 11–17, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. N. J. van Casteren, G. H. M. van der Linden, F. G. A. J. Hakvoort-Cammel, K. Hählen, G. R. Dohle, and M. M. van den Heuvel-Eibrink, “Effect of childhood cancer treatment on fertility markers in adult male long-term survivors,” Pediatric Blood and Cancer, vol. 52, no. 1, pp. 108–112, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. S. J. Howell and S. M. Shalet, “Testicular function following chemotherapy,” Human Reproduction Update, vol. 7, no. 4, pp. 363–369, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Ash, “The influence of radiation on fertility in man,” British Journal of Radiology, vol. 53, no. 628, pp. 271–278, 1980. View at Scopus
  22. Cancer Facts and Figures, American Cancer Society, Atlanta, Ga, USA, 2008.
  23. C. R. Gracia and J. P. Ginsberg, “Fertility risk in pediatric and adolescent cancers,” Cancer Treatment and Research, vol. 138, pp. 57–72, 2007. View at Scopus
  24. E. Goossens and H. Tournaye, “Towards an efficient and safe fertility preservation strategy in boys facing chemo-and radiotherapy,” Proceedings of the Belgian Royal Academies of Medicine, vol. 1, pp. 1–18, 2011.
  25. O. ’Donnell L, Roberston, M. Jones, and E. Simpson, “Estrogen and spermatogenesis,” Endocrine Reviews, vol. 22, no. 3, pp. 289–318, 2001.
  26. P. Rubinstein, L. Dobrila, R. E. Rosenfield et al., “Processing and cryopreservation of placental/umbilical cord blood for unrelated bone marrow reconstitution,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 22, pp. 10119–10122, 1995. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Odavic, J. Blom, E. A. Beck, and U. Bucher, “Cryoprotection of human marrow committed stem cells (CFU-c) by dextran, glycerol and dimethyl sulfoxide,” Experientia, vol. 36, no. 9, pp. 1122–1124, 1980. View at Scopus
  28. M. L. Disis, C. dela Rosa, V. Goodell et al., “Maximizing the retention of antigen specific lymphocyte function after cryopreservation,” Journal of Immunological Methods, vol. 308, no. 1-2, pp. 13–18, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Hreinsson, P. Zhang, M. L. Swahn, K. Hultenby, and O. Hovatta, “Cryopreservation of follicles in human ovarian cortical tissue. Comparison of serum and human serum albumin in the cryoprotectant solutions,” Human Reproduction, vol. 18, no. 11, pp. 2420–2428, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. J. J. Wu, T. J. Hu, B. Guo, Z. P. Yue, Z. T. Yang, and X. M. Zhang, “Cryopreservation of adult bovine testicular tissue for spermatogonia enrichment,” Cryo Letters, vol. 32, no. 5, pp. 402–409, 2011.
  31. L. Gooren, “Hormone treatment of the adult transsexual patient,” Hormone Research in Pediatrics, vol. 64, no. 2, pp. 31–36, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. V. Keros, S. Xella, K. Hultenby et al., “Vitrification versus controlled-rate freezing in cryopreservation of human ovarian tissue,” Human Reproduction, vol. 24, no. 7, pp. 1670–1683, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Kuwayama, “Highly efficient vitrification for cryopreservation of human oocytes and embryos: the Cryotop method,” Theriogenology, vol. 67, no. 1, pp. 73–80, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Curaba, M. Verleysen, C. A. Amorim et al., “Cryopreservation of prepubertal mouse testicular tissue by vitrification,” Fertility and Sterility, vol. 95, no. 4, pp. 1229–1234, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Poels, A. van Langendonckt, J. P. Dehoux, J. Donnez, and C. Wyns, “Vitrification of non-human primate immature testicular tissue allows maintenance of proliferating spermatogonial cells after Xenografting to recipient mice,” Theriogenology, vol. 77, no. 5, pp. 1008–1013, 2012.
  36. M. Curaba, J. Poels, A. van Langendonckt, J. Donnez, and C. Wyns, “Can prepubertal human testicular tissue be cryopreserved by vitrification?” Fertility and Sterility, vol. 95, no. 6, pp. 2123.e9–2123.e12, 2011.