About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 932691, 6 pages
http://dx.doi.org/10.1155/2013/932691
Review Article

Potential of RAS Inhibition to Improve Metabolic Bone Disorders

1Center for Systems Biomedical Sciences, University of Shanghai for Science and Technology, Shanghai 200093, China
2School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
3Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

Received 24 May 2013; Accepted 2 July 2013

Academic Editor: John J. Gildea

Copyright © 2013 Yoseph Gebru et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. H. Ralston and B. De Crombrugghe, “Genetic regulation of bone mass and susceptibility to osteoporosis,” Genes and Development, vol. 20, no. 18, pp. 2492–2506, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. K. C. Siamopoulos and R. G. Kalaitzidis, “Inhibition of the renin-angiotensin system and chronic kidney disease,” International Urology and Nephrology, vol. 40, no. 4, pp. 1015–1025, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Nakagami and R. Morishita, “Hormones and osteoporosis update. Effect of angiotensin II on bone metabolism,” Clinical Calcium, vol. 19, no. 7, pp. 997–1002, 2009. View at Scopus
  4. Y. Zhang, T. Y. Diao, S. S. Gu et al., “Effects of angiotensin II type 1 receptor blocker on bones in mice with type 1 diabetes induced by streptozotocin,” Journal of the Renin-Angiotensin-Aldosterone System, 2013. View at Publisher · View at Google Scholar
  5. I. C. Haznedaroǧlu, S. Tuncer, and M. Gürsoy, “A local renin-angiotensin system in the bone marrow,” Medical Hypotheses, vol. 46, no. 6, pp. 507–510, 1996. View at Publisher · View at Google Scholar · View at Scopus
  6. X. X. Guan, Y. Zhou, and J. Y. Li, “Reciprocal roles of angiotensin II and angiotensin II receptors blockade (ARB) in regulating Cbfa1/RANKL via cAMP signaling pathway: possible mechanism for hypertension-related osteoporosis and antagonistic effect of ARB on hypertension-related osteoporosis,” International Journal of Molecular Sciences, vol. 12, no. 7, pp. 4206–4213, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Hagiwara, Y. Hiruma, A. Inoue, A. Yamaguchi, and S. Hirose, “Deceleration by angiotensin II of the differentiation and bone formation of rat calvarial osteoblastic cells,” Journal of Endocrinology, vol. 156, no. 3, pp. 543–550, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. S. L. Teitelbaum, “Bone resorption by osteoclasts,” Science, vol. 289, no. 5484, pp. 1504–1508, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. I. C. Lin, J. M. Smartt Jr., H. Nah, H. Ischiropoulos, and R. E. Kirschner, “Nitric oxide stimulates proliferation and differentiation of fetal calvarial osteoblasts and dural cells,” Plastic and Reconstructive Surgery, vol. 121, no. 5, pp. 1554–1566, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Shimizu, H. Nakagami, M. K. Osako et al., “Angiotensin II accelerates osteoporosis by activating osteoclasts,” FASEB Journal, vol. 22, no. 7, pp. 2465–2475, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Kaneko, M. Ito, T. Fumoto et al., “Physiological function of the angiotensin AT1a receptor in bone remodeling,” Journal of Bone and Mineral Research, vol. 26, no. 12, pp. 2959–2966, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Beyazit, S. Aksu, I. C. Haznedaroglu et al., “Overexpression of the local bone marrow renin-angiotensin system in acute myeloid leukemia,” Journal of the National Medical Association, vol. 99, no. 1, pp. 57–63, 2007. View at Scopus
  13. R. T. Franceschi, “The developmental control of osteoblast-specific gene expression: role of specific transcription factors and the extracellular matrix environment,” Critical Reviews in Oral Biology and Medicine, vol. 10, no. 1, pp. 40–57, 1999. View at Scopus
  14. Y. Beyazit, T. Purnak, G. S. Guven, and I. C. Haznedaroglu, “Local bone marrow renin-angiotensin system and atherosclerosis,” Cardiology Research and Practice, vol. 1, no. 1, Article ID 714515, p. 10, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Asaba, M. Ito, T. Fumoto et al., “Activation of renin-angiotensin system induces osteoporosis independently of hypertension,” Journal of Bone and Mineral Research, vol. 24, no. 2, pp. 241–250, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. W. B. Strawn, R. S. Richmond, E. A. Tallant, P. E. Gallagher, and C. M. Ferrario, “Renin-angiotensin system expression in rat bone marrow haematopoietic and stromal cells,” British Journal of Haematology, vol. 126, no. 1, pp. 120–126, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. S. S. Gu, Y. Zhang, X. L. Li et al., “Involvement of the skeletal renin-angiotensin system in age-related osteoporosis of ageing mice,” Bioscience, Biotechnology, and Biochemistry, vol. 76, no. 7, pp. 1367–1371, 2012. View at Publisher · View at Google Scholar
  18. S. S. Gu, Y. Zhang, S. Y. Wu, T. Y. Diao, Y. A. Gebru, and H. W. Deng, “Early molecular responses of bone to obstructive nephropathy induced by unilateral ureteral obstruction in mice,” Nephrology, vol. 17, no. 8, pp. 767–773, 2012. View at Publisher · View at Google Scholar
  19. H. Lynn, T. Kwok, S. Y. S. Wong, J. Woo, and P. C. Leung, “Angiotensin converting enzyme inhibitor use is associated with higher bone mineral density in elderly Chinese,” Bone, vol. 38, no. 4, pp. 584–588, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Komers, “Renin inhibition in the treatment of diabetic kidney disease,” Clinical Science, vol. 124, pp. 553–566, 2013. View at Publisher · View at Google Scholar
  21. S. Lamparter, L. Kling, M. Schrader, R. Ziegler, and J. Pfeilschifter, “Effects of angiotensin II on bone cells in vitro,” Journal of Cellular Physiology, vol. 175, no. 1, pp. 89–98, 1998.
  22. R. Hatton, M. Stimpel, and T. J. Chambers, “Angiotensin II is generated from angiotensin I by bone cells and stimulates osteoclastic bone resorption in vitro,” Journal of Endocrinology, vol. 152, no. 1, pp. 5–10, 1997. View at Scopus
  23. Y. Izu, F. Mizoguchi, A. Kawamata et al., “Angiotensin II type 2 receptor blockade increases bone mass,” Journal of Biological Chemistry, vol. 284, no. 8, pp. 4857–4864, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Zhang, Y. Wang, Y. Chen et al., “Inhibition of renin activity by aliskiren ameliorates diabetic nephropathy in type 1 diabetes mouse model,” Journal of Diabetes Mellitus, vol. 2, no. 3, pp. 353–360, 2012. View at Publisher · View at Google Scholar
  25. E. Pimenta and S. Oparil, “Role of aliskiren in cardio-renal protection and use in hypertensives with multiple risk factors,” Vascular Health and Risk Management, vol. 5, pp. 453–463, 2009. View at Scopus
  26. M. Azizi, R. Webb, J. Nussberger, and N. K. Hollenberg, “Renin inhibition with aliskiren: where are we now, and where are we going?” Journal of Hypertension, vol. 24, no. 2, pp. 243–256, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Kwok, J. Leung, Y. F. Zhang et al., “Does the use of ACE inhibitors or angiotensin receptor blockers affect bone loss in older men?” Osteoporosis International, vol. 23, no. 8, pp. 2159–2167, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Nakagami, M. K. Osako, and R. Morishita, “Potential effect of angiotensin II receptor blockade in adipose tissue and bone,” Current Pharmaceutical Design, vol. 19, no. 17, pp. 3049–3053, 2013. View at Publisher · View at Google Scholar
  29. P. Stucchi, V. Cano, M. Ruiz-Gayo, and M. S. Fernández-Alfonso, “Aliskiren reduces body-weight gain, adiposity and plasma leptin during diet-induced obesity,” British Journal of Pharmacology, vol. 158, no. 3, pp. 771–778, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Moser, J. L. Izzo Jr., and D. A. Sica, “The use of renin inhibitors in the management of hypertension,” Journal of Clinical Hypertension, vol. 9, no. 9, pp. 701–705, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. M. J. Brown, “Direct renin inhibition-a new way of targeting the renin system,” Journal of the Renin-Angiotensin-Aldosterone System, vol. 7, no. 2, pp. S7–S11, 2006. View at Scopus
  32. A. Stanton, C. Jensen, J. Nussberger, and E. OBrien, “Blood Pressure Lowering in Essential Hypertension with an Oral Renin Inhibitor, Aliskiren,” Hypertension, vol. 42, no. 6, pp. 1137–1143, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Rahuel, V. Rasetti, J. Maibaum et al., “Structure-based drug design: the discovery of novel nonpeptide orally active inhibitors of human renin,” Chemistry and Biology, vol. 7, no. 7, pp. 493–504, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. M. J. Brown, “Aliskiren,” Circulation, vol. 118, no. 7, pp. 773–784, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. J. M. Wood, J. Maibaum, J. Rahuel et al., “Structure-based design of aliskiren, a novel orally effective renin inhibitor,” Biochemical and Biophysical Research Communications, vol. 308, no. 4, pp. 698–705, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Limoges, H. A. Dieterich, C.-M. Yeh, S. Vaidyanathan, D. Howard, and W. P. Dole, “A study of dose-proportionality in the pharmacokinetics of the oral direct renin inhibitor aliskiren in healthy subjects,” International Journal of Clinical Pharmacology and Therapeutics, vol. 46, no. 5, pp. 252–258, 2008. View at Scopus
  37. N. J. Brown and D. E. Vaughan, “Angiotensin-converting enzyme inhibitors,” Circulation, vol. 97, no. 14, pp. 1411–1420, 1998. View at Scopus
  38. R. Morishita, J. Higaki, M. Nagano et al., “Discrepancy between renin mRNA and plasma renin level in angiotensin-converting enzyme inhibitor-treated rats,” Clinical and Experimental Pharmacology and Physiology, vol. 20, no. 1, pp. 15–20, 1993. View at Scopus
  39. A. Barreras and C. Gurk-Turner, “Angiotensin II receptor blockers,” Proceedings (Baylor University. Medical Center), vol. 16, no. 1, pp. 123–126, 2003.
  40. M. Burnier, “Angiotensin II type 1 receptor blockers,” Circulation, vol. 103, no. 6, pp. 904–912, 2001. View at Scopus
  41. M. W. Krause, V. A. Fonseca, and S. V. Shah, “Combination inhibition of the renin-angiotensin system: is more better,” Kidney International, vol. 80, no. 3, pp. 245–255, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Albayrak, H. Celebi, A. Albayrak et al., “Elevated serum angiotensin converting enzyme levels as a reflection of bone marrow renin-angiotensin system activation in multiple myeloma,” Journal of the Renin-Angiotensin-Aldosterone System, vol. 13, no. 2, pp. 259–264, 2012. View at Publisher · View at Google Scholar
  43. M. Durik, B. Sevá Pessôa, and A. J. Roks, “The renin-angiotensin system, bone marrow and progenitor cells,” Clinical Science, vol. 123, pp. 205–223, 2012. View at Publisher · View at Google Scholar
  44. I. C. Haznedaroglu and Y. Beyazit, “Local bone marrow renin-angiotensin system in primitive, definitive and neoplastic haematopoiesis,” Clinical Science, vol. 124, pp. 307–323, 2013. View at Publisher · View at Google Scholar