About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 935046, 11 pages
http://dx.doi.org/10.1155/2013/935046
Research Article

Myogenic Differentiation of Mesenchymal Stem Cells in a Newly Developed Neurotised AV-Loop Model

1Department of Plastic and Hand Surgery, University Hospital of Erlangen, 91054 Erlangen, Germany
2Department of Plastic and Hand Surgery, University of BG Trauma Center Ludwigshafen/University of Heidelberg, 67071 Ludwigshafen, Germany
3Interdisciplinary Clinic for Stem Cell Transplantation, University Cancer Center Hamburg (UCCH), 20246 Hamburg, Germany

Received 12 June 2013; Accepted 7 August 2013

Academic Editor: Kirsten Haastert-Talini

Copyright © 2013 Franz F. Bitto et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. E. Horch, U. Kneser, E. Polykandriotis, V. J. Schmidt, J. Sun, and A. Arkudas, “Tissue engineering and regenerative medicine—where do we stand?” Journal of Cellular and Molecular Medicine, vol. 16, no. 6, pp. 1157–1165, 2012.
  2. D. W. Hutmacher, R. E. Horch, D. Loessner et al., “Translating tissue engineering technology platforms into cancer research,” Journal of Cellular and Molecular Medicine A, vol. 13, no. 8, pp. 1417–1427, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Mollmann, H. M. Nef, S. Voss et al., “Stem cell-mediated natural tissue engineering,” Journal of Cellular and Molecular Medicine, vol. 15, no. 1, pp. 52–62, 2009.
  4. J. P. Beier, F. F. Bitto, C. Lange et al., “Myogenic differentiation of mesenchymal stem cells co-cultured with primary myoblasts,” Cell Biology International, vol. 35, no. 4, pp. 397–406, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. F. B. Bedada, A. Technau, H. Ebelt, M. Schulze, and T. Braun, “Activation of myogenic differentiation pathways in adult bone marrow-derived stem cells,” Molecular and Cellular Biology, vol. 25, no. 21, pp. 9509–9519, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Bossolasco, S. Corti, S. Strazzer et al., “Skeletal muscle differentiation potential of human adult bone marrow cells,” Experimental Cell Research, vol. 295, no. 1, pp. 66–78, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. E. J. Gang, D. Bosnakovski, T. Simsek, K. To, and R. C. R. Perlingeiro, “Pax3 activation promotes the differentiation of mesenchymal stem cells toward the myogenic lineage,” Experimental Cell Research, vol. 314, no. 8, pp. 1721–1733, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Ding, D. Xu, G. Feng, A. Bushell, R. J. Muschel, and K. J. Wood, “Mesenchymal stem cells prevent the rejection of fully allogenic islet grafts by the immunosuppressive activity of matrix metalloproteinase-2 and -9,” Diabetes, vol. 58, no. 8, pp. 1797–1806, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Tsuda, K. Yamahara, S. Ishikane et al., “Allogenic fetal membrane-derived mesenchymal stem cells contribute to renal repair in experimental glomerulonephritis,” American Journal of Physiology, vol. 299, no. 5, pp. F1004–F1013, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. I. Kassis, A. Vaknin-Dembinsky, and D. Karussis, “Bone marrow mesenchymal stem cells: agents of immunomodulation and neuroprotection,” Current Stem Cell Research and Therapy, vol. 6, no. 1, pp. 63–68, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. J. A. Kode, S. Mukherjee, M. V. Joglekar, and A. A. Hardikar, “Mesenchymal stem cells: immunobiology and role in immunomodulation and tissue regeneration,” Cytotherapy, vol. 11, no. 4, pp. 377–391, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Eberli, S. Soker, A. Atala, and J. J. Yoo, “Optimization of human skeletal muscle precursor cell culture and myofiber formation in vitro,” Methods, vol. 47, no. 2, pp. 98–103, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. J. P. Beier, D. Klumpp, M. Rudisile et al., “Collagen matrices from sponge to nano: new perspectives for tissue engineering of skeletal muscle,” BMC Biotechnology, vol. 9, article 34, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. H. H. Vandenburgh, P. Karlisch, and L. Farr, “Maintenance of highly contractile tissue-cultured avian skeletal myotubes in collagen gel,” In Vitro Cellular and Developmental Biology, vol. 24, no. 3, pp. 166–174, 1988. View at Scopus
  15. J. Venugopal, L. L. Ma, T. Yong, and S. Ramakrishna, “In vitro study of smooth muscle cells on polycaprolactone and collagen nanofibrous matrices,” Cell Biology International, vol. 29, no. 10, pp. 861–867, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. J. P. Beier, R. E. Horch, A. Hess et al., “Axial vascularization of a large volume calcium phosphate ceramic bone substitute in the sheep AV loop model,” Journal of Tissue Engineering and Regenerative Medicine, vol. 4, no. 3, pp. 216–223, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Klumpp, M. Rudisile, R. I. Kühnle et al., “Three-dimensional vascularization of electrospun PCL/collagen-blend nanofibrous scaffolds in vivo,” Journal of Biomedical Materials Research Part A, vol. 100, no. 9, pp. 2302–2311, 2012.
  18. B. Manasseri, G. Cuccia, S. Moimas et al., “Microsurgical arterovenous loops and biological templates: a novel in vivo chamber for tissue engineering,” Microsurgery, vol. 27, no. 7, pp. 623–629, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Polykandriotis, A. Arkudas, S. Euler, J. P. Beier, R. E. Horch, and U. Kneser, “Prevascularisation strategies in tissue engineering,” Handchirurgie Mikrochirurgie Plastische Chirurgie, vol. 38, no. 4, pp. 217–223, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Messina, S. K. Bortolotto, O. C. S. Cassell, J. Kelly, K. M. Abberton, and W. A. Morrison, “Generation of a vascularized organoid using skeletal muscle as the inductive source,” FASEB Journal, vol. 19, no. 11, pp. 1570–1572, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. V. Agrawal, B. N. Brown, A. J. Beattie, T. W. Gilbert, and S. F. Badylak, “Evidence of innervation following extracellular matrix scaffold-mediated remodelling of muscular tissues,” Journal of Tissue Engineering and Regenerative Medicine, vol. 3, no. 8, pp. 590–600, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Zhang, A. Liu, W. Zhang, H. Jiang, and Z. Cai, “Correlation of contractile function recovery with acetylcholine receptor changes in a rat muscle flap model,” Microsurgery, vol. 30, no. 4, pp. 307–313, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Brockhausen, R. N. Cole, O. L. Gervásio, S. T. Ngo, P. G. Noakes, and W. D. Phillips, “Neural agrin increases postsynaptic ACh receptor packing by elevating rapsyn protein at the mouse neuromuscular synapse,” Developmental Neurobiology, vol. 68, no. 9, pp. 1153–1169, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. V. Witzemann, “Development of the neuromuscular junction,” Cell and Tissue Research, vol. 326, no. 2, pp. 263–271, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Lange, F. Tögel, H. Ittrich et al., “Administered mesenchymal stem cells enhance recovery from ischemia/reperfusion-induced acute renal failure in rats,” Kidney International, vol. 68, no. 4, pp. 1613–1617, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. E. Polykandriotis, J. Tjiawi, S. Euler et al., “The venous graft as an effector of early angiogenesis in a fibrin matrix,” Microvascular Research, vol. 75, no. 1, pp. 25–33, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. K. J. Livak and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method,” Methods, vol. 25, no. 4, pp. 402–408, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. O. Bleiziffer, M. Hammon, E. Naschberger et al., “Endothelial progenitor cells are integrated in newly formed capillaries and alter adjacent fibrovascular tissue after subcutaneous implantation in a fibrin matrix,” Journal of Cellular and Molecular Medicine, vol. 15, no. 11, pp. 2452–2461, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Grefte, A. M. Kuijpers-Jagtman, R. Torensma, and J. W. Von Den Hoff, “Skeletal muscle development and regeneration,” Stem Cells and Development, vol. 16, no. 5, pp. 857–868, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. P. Schumann, F. Tavassol, D. Lindhorst et al., “Consequences of seeded cell type on vascularization of tissue engineering constructs in vivo,” Microvascular Research, vol. 78, no. 2, pp. 180–190, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Tanaka, A. Tsutsumi, D. M. Crowe, S. Tajima, and W. A. Morrison, “Generation of an autologous tissue (matrix) flap by combining an arteriovenous shunt loop with artificial skin in rats: preliminary report,” British Journal of Plastic Surgery, vol. 53, no. 1, pp. 51–57, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. A. M. Boos, J. S. Loew, A. Weigand et al., “Engineering axially vascularized bone in the sheep arteriovenous-loop model,” Journal of Tissue Engineering and Regenerative Medicine, vol. 7, no. 8, pp. 654–664, 2013. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Arkudas, J. P. Beier, K. Heidner et al., “Axial prevascularization of porous matrices using an arteriovenous loop promotes survival and differentiation of transplanted autologous osteoblasts,” Tissue Engineering, vol. 13, no. 7, pp. 1549–1560, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. E. Polykandriotis, D. Drakotos, A. Arkudas et al., “Factors influencing successful outcome in the arteriovenous loop model: a retrospective study of 612 loop operations,” Journal of Reconstructive Microsurgery, vol. 27, no. 1, pp. 11–18, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. E. D. Boland, J. A. Matthews, K. J. Pawlowski, D. G. Simpson, G. E. Wnek, and G. L. Bowlin, “Electrospinning collagen and elastin: preliminary vascular tissue engineering,” Frontiers in Bioscience, vol. 9, pp. 1422–1432, 2004. View at Scopus
  36. J. Zeng, A. Aigner, F. Czubayko, T. Kissel, J. H. Wendorff, and A. Greiner, “Poly(vinyl alcohol) nanofibers by electrospinning as a protein delivery system and the retardation of enzyme release by additional polymer coatings,” Biomacromolecules, vol. 6, no. 3, pp. 1484–1488, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. D. Klumpp, R. E. Horch, U. Kneser, and J. P. Beier, “Engineering skeletal muscle tissue—new perspectives in vitro and in vivo,” Journal of Cellular and Molecular Medicine, vol. 14, no. 11, pp. 2622–2629, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Levenberg, J. Rouwkema, M. Macdonald et al., “Engineering vascularized skeletal muscle tissue,” Nature Biotechnology, vol. 23, pp. 879–884, 2005.
  39. J. Koffler, K. Kaufman-Francis, S. Yulia et al., “Improved vascular organization enhances functional integration of engineered skeletal muscle grafts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 36, pp. 14789–14794, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. T. Nakasa, M. Ishikawa, M. Shi, H. Shibuya, N. Adachi, and M. Ochi, “Acceleration of muscle regeneration by local injection of muscle-specific microRNAs in rat skeletal muscle injury model,” Journal of Cellular and Molecular Medicine, vol. 14, no. 10, pp. 2495–2505, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. E. Skouras, D. Merkel, M. Grosheva et al., “Manual stimulation, but not acute electrical stimulation prior to reconstructive surgery, improves functional recovery after facial nerve injury in rats,” Restorative Neurology and Neuroscience, vol. 27, no. 3, pp. 237–251, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. B. T. Corona, C. L. Ward, B. S. Harrison, and G. J. Christ, “Regenerative medicine: basic concepts, current status, and future applications,” Journal of Investigative Medicine, vol. 58, no. 7, pp. 849–858, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. S. N. Rath, L. A. Strobel, A. Arkudas et al., “Osteoinduction and survival of osteoblasts and bone-marrow stromal cells in 3D biphasic calcium phosphate scaffolds under static and dynamic culture conditions,” Journal of Cellular and Molecular Medicine, vol. 16, no. 10, pp. 2350–2361, 2012.
  44. N. Tandon, A. Marsano, R. Maidhof et al., “Surface-patterned electrode bioreactor for electrical stimulation,” Lab on a Chip, vol. 10, no. 6, pp. 692–700, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. M. H. Kim, H. N. Hong, J. P. Hong et al., “The effect of VEGF on the myogenic differentiation of adipose tissue derived stem cells within thermosensitive hydrogel matrices,” Biomaterials, vol. 31, no. 6, pp. 1213–1218, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. D. Noël, D. Caton, S. Roche et al., “Cell specific differences between human adipose-derived and mesenchymal-stromal cells despite similar differentiation potentials,” Experimental Cell Research, vol. 314, no. 7, pp. 1575–1584, 2008. View at Publisher · View at Google Scholar · View at Scopus