About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 937936, 9 pages
http://dx.doi.org/10.1155/2013/937936
Research Article

Anti-Inflammatory Effects of Arsenic Trioxide Eluting Stents in a Porcine Coronary Model

1Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
2Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
3Department of Cardiology, Sichuan Provincial People’s Hospital, Chengdu 610072, China
4Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China

Received 8 November 2012; Accepted 26 December 2012

Academic Editor: George Perry

Copyright © 2013 Li Shen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. E. Sousa, M. A. Costa, A. G. M. R. Sousa et al., “Two-year angiographic and intravascular ultrasound follow-up after implantation of sirolimus-eluting stents in human coronary arteries,” Circulation, vol. 107, no. 3, pp. 381–383, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. G. W. Stone, S. G. Ellis, D. A. Cox et al., “A Polymer-based, paclitaxel-eluting stent in patients with coronary artery disease,” The New England Journal of Medicine, vol. 350, no. 3, pp. 221–231, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Kastrati, J. Mehilli, J. Pache et al., “Analysis of 14 trials comparing sirolimus-eluting stents with bare-metal stents,” The New England Journal of Medicine, vol. 356, no. 10, pp. 1030–1039, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Lagerqvist, S. K. James, U. Stenestrand, J. Lindbäck, T. Nilsson, and L. Wallentin, “Long-term outcomes with drug-eluting stents versus bare-metal stents in Sweden,” The New England Journal of Medicine, vol. 356, no. 10, pp. 1009–1019, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. W. H. Maisel, “Unanswered questions: drug-eluting stents and the risk of late thrombosis,” The New England Journal of Medicine, vol. 356, no. 10, pp. 981–984, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Farb, D. K. Weber, F. D. Kolodgie, A. P. Burke, and R. Virmani, “Morphological predictors of restenosis after coronary stenting in humans,” Circulation, vol. 105, no. 25, pp. 2974–2980, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. J. I. Kotani, M. Awata, S. Nanto et al., “Incomplete neointimal coverage of sirolimus-eluting stents: angioscopic findings,” Journal of the American College of Cardiology, vol. 47, no. 10, pp. 2108–2111, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. G. J. Wilson, G. Nakazawa, R. S. Schwartz et al., “Comparison of inflammatory response after implantation of sirolimus- and paclitaxel-eluting stents in porcine coronary arteries,” Circulation, vol. 120, no. 2, pp. 141–149, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. S. H. Hofma, W. J. van der Giessen, B. M. van Dalen et al., “Indication of long-term endothelial dysfunction after sirolimus-eluting stent implantation,” European Heart Journal, vol. 27, no. 2, pp. 166–170, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. A. V. Finn, M. Joner, G. Nakazawa et al., “Pathological correlates of late drug-eluting stent thrombosis: strut coverage as a marker of endothelialization,” Circulation, vol. 115, no. 18, pp. 2435–2441, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. A. V. Finn, G. Nakazawa, M. Joner et al., “Vascular responses to drug eluting stents: importance of delayed healing,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 7, pp. 1500–1510, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Ako, Y. Morino, Y. Honda et al., “Late incomplete stent apposition after sirolimus-eluting stent implantation: a serial intravascular ultrasound analysis,” Journal of the American College of Cardiology, vol. 46, no. 6, pp. 1002–1005, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Joner, A. V. Finn, A. Farb et al., “Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk,” Journal of the American College of Cardiology, vol. 48, no. 1, pp. 193–202, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. T. F. Lüscher, J. Steffel, F. R. Eberli et al., “Drug-eluting stent and coronary thrombosis: biological mechanisms and clinical implications,” Circulation, vol. 115, no. 8, pp. 1051–1058, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Ako, H. N. Bonneau, Y. Honda, and P. J. Fitzgerald, “Design criteria for the ideal drug-eluting stent,” The American Journal of Cardiology, vol. 100, no. 8, pp. S3–S9, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Zhang, S. Y. Wang, and L. H. Hu, “Treatment of acute promyelocytic leukemia with intravenous arsenic trioxide,” Chinese Journal of Hematology, vol. 17, pp. 58–60, 1996.
  17. G. Q. Chen, J. Zhu, X. G. Shi et al., “In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis with downregulation of Bcl-2 expression and modulation of PML- RARα/PML proteins,” Blood, vol. 88, no. 3, pp. 1052–1061, 1996. View at Scopus
  18. H. Pelicano, L. Feng, Y. Zhou et al., “Inhibition of mitochondrial respiration: a novel strategy to enhance drug-induced apoptosis in human leukemia cells by a reactive oxygen species-mediated mechanism,” Journal of Biological Chemistry, vol. 278, no. 39, pp. 37832–37839, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. H. Kang, M. J. Yi, M. J. Kim et al., “Caspase-independent cell death by arsenic trioxide in human cervical cancer cells: reactive oxygen species-mediated poly(ADP-ribose) polymerase-1 activation signals apoptosis-inducing factor release from mitochondria,” Cancer Research, vol. 64, no. 24, pp. 8960–8967, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. Z. Diaz, M. Colombo, K. K. Mann et al., “Trolox selectively enhances arsenic-mediated oxidative stress and apoptosis in APL and other malignant cell lines,” Blood, vol. 105, no. 3, pp. 1237–1245, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Baumgartner, S. Sturlan, E. Roth, B. Wessner, and T. Bachleitner-Hofmann, “Enhancement of arsenic trioxide-mediated apoptosis using docosahexaenoic acid in arsenic trioxide-resistant solid tumor cells,” International Journal of Cancer, vol. 112, no. 4, pp. 707–712, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. X. H. Zhu, Y. L. Shen, Y. K. Jing et al., “Apoptosis and growth inhibition in malignant lymphocytes after treatment with arsenic trioxide at clinically achievable concentrations,” Journal of the National Cancer Institute, vol. 91, no. 9, pp. 772–778, 1999. View at Scopus
  23. W. H. Miller Jr., H. M. Schipper, J. S. Lee, J. Singer, and S. Waxman, “Mechanisms of action of arsenic trioxide,” Cancer Research, vol. 62, no. 14, pp. 3893–3903, 2002. View at Scopus
  24. G. J. Roboz, S. Dias, G. Lam et al., “Arsenic trioxide induces dose- and time-dependent apoptosis of endothelium and may exert an antileukemic effect via inhibition of angiogenesis,” Blood, vol. 96, no. 4, pp. 1525–1530, 2000. View at Scopus
  25. W. Yang, J. B. Ge, H. L. Liu et al., “Arsenic trioxide eluting stent reduces neointima formation in a rabbit iliac artery injury model,” Cardiovascular Research, vol. 72, no. 3, pp. 483–493, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Kornowski, M. K. Hong, F. O. Tio, O. Bramwell, H. Wu, and M. B. Leon, “In-stent restenosis: contributions of inflammatory responses and arterial injury to neointimal hyperplasia,” Journal of the American College of Cardiology, vol. 31, no. 1, pp. 224–230, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. J. J. Li, J. Li, J. L. Nan et al., “Coronary restenotic reduction of drug-eluting stenting may be due to its anti-inflammatory effects,” Medical Hypotheses, vol. 69, no. 5, pp. 1004–1009, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Gaspardone and F. Versaci, “Coronary stenting and inflammation,” The American journal of cardiology., vol. 96, no. 12 A, pp. 65L–70L, 2005. View at Scopus
  29. J. J. Li, S. P. Nie, C. Y. Zhang, Z. Gao, X. Zheng, and Y. L. Guo, “Is inflammation a contributor for coronary stent restenosis?” Medical Hypotheses, vol. 68, no. 5, pp. 945–951, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Dibra, J. Mehilli, S. Braun et al., “Inflammatory response after intervention assessed by serial C-reactive protein measurements correlates with restenosis in patients treated with coronary stenting,” The American Heart Journal, vol. 150, no. 2, pp. 344–350, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Farb, G. Sangiorgi, A. J. Carter et al., “Pathology of acute and chronic coronary stenting in humans,” Circulation, vol. 99, no. 1, pp. 44–52, 1999. View at Scopus
  32. P. H. Grewe, T. Deneke, A. Machraoui, J. Barmeyer, and K. M. Müller, “Acute and chronic tissue response to coronary stent implantation: pathologic findings in human specimen,” Journal of the American College of Cardiology, vol. 35, no. 1, pp. 157–163, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Glover, X. Ma, Y. X. Chen et al., “Human in-stent restenosis tissue obtained by means of coronary atherectomy consists of an abundant proteoglycan matrix with a paucity of cell proliferation,” The American Heart Journal, vol. 144, no. 4, pp. 702–709, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. I. M. Chung, H. K. Gold, S. M. Schwartz, Y. Ikari, M. A. Reidy, and T. N. Wight, “Enhanced extracellular matrix accumulation in restenosis of coronary arteries after stent deployment,” Journal of the American College of Cardiology, vol. 40, no. 12, pp. 2072–2081, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. F. G. Welt and C. Rogers, “Inflammation and restenosis in the stent era,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 22, no. 11, pp. 1769–1776, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Colombo and G. Sangiorgi, “The Monocyte: the key in the lock to reduce stent hyperplasia?” Journal of the American College of Cardiology, vol. 43, no. 1, pp. 24–26, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. F. R. Gong, X. Y. Cheng, S. F. Wang, Y. C. Zhao, Y. Gao, and H. B. Cai, “Heparin-immobilized polymers as non-inflammatory and non-thrombogenic coating materials for arsenic trioxide eluting stents,” Acta Biomaterialia, vol. 6, no. 2, pp. 534–546, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. J. H. Bräsen, A. Kivelä, K. Röser et al., “Angiogenesis, vascular endothelial growth factor and platelet-derived growth factor-BB expression, iron deposition, and oxidation-specific epitopes in stented human coronary arteries,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 21, no. 11, pp. 1720–1726, 2001. View at Scopus
  39. N. A. Scott, “Restenosis following implantation of bare metal coronary stents: pathophysiology and pathways involved in the vascular responses to injury,” Advanced Drug Delivery Reviews, vol. 58, no. 3, pp. 358–376, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. T. Suzuki, G. Kopia, S. I. Hayashi et al., “Stent-based delivery of sirolimus reduces neointimal formation in a porcine coronary model,” Circulation, vol. 104, no. 10, pp. 1188–1193, 2001. View at Scopus
  41. A. Blum, D. J. Schneider, B. E. Sobel, and H. L. Dauerman, “Endothelial dysfunction and inflammation after percutaneous coronary intervention,” The American Journal of Cardiology, vol. 94, no. 11, pp. 1420–1423, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. J. S. Li, R. Jabara, L. Pendyala et al., “Abnormal vasomotor function of porcine coronary arteries distal to sirolimus-eluting stents,” Journal of American College of Cardiology, vol. 1, no. 3, pp. 279–285, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. N. Werner, S. Junk, U. Laufs et al., “Intravenous transfusion of endothelial progenitor cells reduces neointima formation after vascular injury,” Circulation research, vol. 93, no. 2, pp. e17–e24, 2003. View at Scopus
  44. D. Kong, L. G. Melo, A. A. Mangi et al., “Enhanced inhibition of neointimal hyperplasia by genetically engineered endothelial progenitor cells,” Circulation, vol. 109, no. 14, pp. 1769–1775, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. J. W. Kim, S. Y. Suh, C. U. Choi et al., “Six-month comparison of coronary endothelial dysfunction associated with Sirolimus-eluting stent versus paclitaxel-eluting stent,” Journal of American College of Cardiology, vol. 1, no. 1, pp. 65–71, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. J. W. Kim, H. S. Seo, J. H. Park et al., “A Prospective, randomized, 6-month comparison of the coronary vasomotor response associated with a zotarolimus- versus a sirolimus-eluting stent,” Journal of the American College of Cardiology, vol. 53, no. 18, pp. 1653–1659, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. B. Dominik and G. Peter, “Endothelial function: from vascular biology to clinical applications,” The American Journal of Cardiology, vol. 90, no. 10, pp. 40L–48L, 2002. View at Scopus
  48. E. Grube, S. Sonoda, F. Ikeno et al., “Six- and twelve-month results from first human experience using everolimus-eluting stents with bioabsorbable polymer,” Circulation, vol. 109, no. 18, pp. 2168–2171, 2004. View at Publisher · View at Google Scholar · View at Scopus