About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 941467, 9 pages
http://dx.doi.org/10.1155/2013/941467
Research Article

Unmasking Snake Venom of Bothrops leucurus: Purification and Pharmacological and Structural Characterization of New PL Bleu TX-III

1Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, 13083-970 Campinas, SP, Brazil
2Department of Biochemistry, Institute of Biology, State University of Campinas, 13083-970 Campinas, SP, Brazil

Received 4 September 2012; Revised 31 October 2012; Accepted 6 November 2012

Academic Editor: Laura Leiva

Copyright © 2013 Fábio André Marangoni et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. J. Calvete, “Venomics: digging into the evolution of venomous systems and learning to twist nature to fight pathology,” Journal of Proteomics, vol. 72, no. 2, pp. 121–126, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. J. W. Fox and S. M. T. Serrano, “Exploring snake venom proteomes: multifaceted analyses for complex toxin mixtures,” Proteomics, vol. 8, no. 4, pp. 909–920, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Georgieva, R. K. Arni, and C. Betzel, “Proteome analysis of snake venom toxins: pharmacological insights,” Expert Review of Proteomics, vol. 5, no. 6, pp. 787–797, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Chaves, G. León, V. H. Alvarado, and J. M. Gutiérrez, “Pharmacological modulation of edema induced by Lys-49 and Asp-49 myotoxic phospholipases A2 isolated from the venom of the snake Bothrops asper (terciopelo),” Toxicon, vol. 36, no. 12, pp. 1861–1869, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. D. C. S. Damico, S. Lilla, G. De Nucci et al., “Biochemical and enzymatic characterization of two basic Asp49 phospholipase A2 isoforms from Lachesis muta muta (Surucucu) venom,” Biochimica et Biophysica Acta, vol. 1726, no. 1, pp. 75–86, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Doley and R. M. Kini, “Protein complexes in snake venom,” Cellular and Molecular Life Sciences, vol. 66, no. 17, pp. 2851–2871, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. D. C. O. Nunes, R. S. Rodrigues, M. N. Lucena et al., “Isolation and functional characterization of proinflammatory acidic phospholipase A2 from Bothrops leucurus snake venom,” Comparative Biochemistry and Physiology C, vol. 154, no. 3, pp. 226–233, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. D. A. Higuchi, C. M. V. Barbosa, C. Bincoletto et al., “Purification and partial characterization of two phospholipases A2 from Bothrops leucurus (white-tailed-jararaca) snake venom,” Biochimie, vol. 89, no. 3, pp. 319–328, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. L. A. Ponce-Soto, P. A. Baldasso, F. F. Romero-Vargas, F. V. Winck, J. C. Novello, and S. Marangoni, “Biochemical, pharmacological and structural characterization of two PLA2 isoforms Cdr-12 and Cdr-13 from Crotalus durissus ruruima snake venom,” Protein Journal, vol. 26, no. 1, pp. 39–49, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Schagger and G. Von Jagow, “Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa,” Analytical Biochemistry, vol. 166, no. 2, pp. 368–379, 1987. View at Scopus
  11. M. Holzer and S. P. Mackessy, “An aqueous endpoint assay of snake venom phospholipase A2,” Toxicon, vol. 34, no. 10, pp. 1149–1155, 1996. View at Publisher · View at Google Scholar · View at Scopus
  12. L. A. Ponce-Soto, M. H. Toyama, S. Hyslop, J. C. Novello, and S. Marangoni, “Isolation and preliminary enzymatic characterization of a novel PLA2 from Crotalus durissus collilineatus venom,” Journal of Protein Chemistry, vol. 21, no. 3, pp. 131–136, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. R. L. Hendrickson and S. C. Meredith, “Amino acid analysis by reverse-phase high-performance liquid chromatography: precolumn derivatization with phenylisothiocyanate,” Analytical Biochemistry, vol. 136, pp. 65–74, 1984. View at Publisher · View at Google Scholar
  14. J. H. Schumaker, A. OGarra, B. Schrader et al., “The characterization of four monoclonal antibodies specific for mouse IL-5 and development of mouse and human IL-5 ELISA,” The Journal of Immunology, vol. 141, pp. 1576–1581, 1988.
  15. M. R. Ruff and G. E. Gifford, “Purification and physico-chemical characterization of rabbit tumor necrosis factor,” Journal of Immunology, vol. 125, no. 4, pp. 1671–1677, 1980. View at Scopus
  16. T. R. John, L. A. Smith, and I. I. Kaiser, “Genomic sequences encoding the acidic and basic subunits of Mojave toxin: unusually high sequence identity of non-coding regions,” Gene, vol. 139, no. 2, pp. 229–234, 1994. View at Publisher · View at Google Scholar · View at Scopus
  17. H. M. Verheij, J. Westerman, B. Sternby, and G. H. de Haas, “The complete primary structure of phospholipase A2 from human pancreas,” Biochimica et Biophysica Acta, vol. 747, no. 1-2, pp. 93–99, 1983. View at Scopus
  18. A. K. Calgarotto, D. C. S. Damico, L. A. Ponce-Soto et al., “Biological and biochemical characterization of new basic phospholipase A2 BmTX-I isolated from Bothrops moojeni snake venom,” Toxicon, vol. 51, no. 8, pp. 1509–1519, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Valentin and G. Lambeau, “What can venom phospholipases A2 tell us about the functional diversity of mammalian secreted phospholipases A2?” Biochimie, vol. 82, no. 9-10, pp. 815–831, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. L. A. Ponce-Soto, V. L. Bonfim, L. Rodrigues-Simioni, J. C. Novello, and S. Marangoni, “Determination of primary structure of two isoforms 6-1 and 6-2 PLA 2 D49 from Bothrops jararacussu snake venom and neurotoxic characterization using in vitro neuromuscular preparation,” Protein Journal, vol. 25, no. 2, pp. 147–155, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. L. A. Ponce-Soto, J. C. Barros, S. Marangoni et al., “Neuromuscular activity of BaTX, a presynaptic basic PLA2 isolated from Bothrops alternatus snake venom,” Comparative Biochemistry and Physiology C, vol. 150, no. 2, pp. 291–297, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Gutiérrez and B. Lomonte, “Phospholipase A2 myotoxins from Bothrops snake venoms,” Toxicon, vol. 33, no. 11, pp. 1405–1424, 1995. View at Publisher · View at Google Scholar · View at Scopus
  23. R. M. Kini, “Excitement ahead: structure, function and mechanism of snake venom phospholipase A2 enzymes,” Toxicon, vol. 42, no. 8, pp. 827–840, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Huancahuire-Vega, L. A. Ponce-Soto, D. Martins-de-Souza, and S. Marangoni, “Structural and functional characterization of brazilitoxins II and III (BbTX-II and -III), two myotoxins from the venom of Bothrops brazili snake,” Toxicon, vol. 54, no. 6, pp. 818–827, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. J. A. Pereañez, V. Núñez, S. Huancahuire-Vega, S. Marangoni, and L. A. Ponce-Soto, “Biochemical and biological characterization of a PLA2 from crotoxin complex of Crotalus durissus cumanensis,” Toxicon, vol. 53, no. 5, pp. 534–542, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. D. L. Scott, S. P. White, Z. Otwinowski, W. Yuan, M. H. Gelb, and P. B. Sigler, “Interfacial catalysis: the mechanism of phospholipase A2,” Science, vol. 250, no. 4987, pp. 1541–1546, 1990. View at Scopus
  27. R. K. Arni and R. J. Ward, “Phospholipase A2—a structural review,” Toxicon, vol. 34, no. 8, pp. 827–841, 1996. View at Publisher · View at Google Scholar · View at Scopus
  28. L. A. Ponce-Soto, D. Martins-De-souza, and S. Marangoni, “Neurotoxic, myotoxic and cytolytic activities of the new basic PLA2 isoforms BmjeTX-I and BmjeTX-II isolated from the Bothrops marajoensis (marajó lancehead) snake venom,” Protein Journal, vol. 29, no. 2, pp. 103–113, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Renetseder, S. Brunie, B. W. Dijkstra, J. Drenth, and P. B. Sigler, “A comparison of the crystal structure of phospholipase A2 from bovine pancreas and Crotalus atrox venom,” Journal of Biological Chemistry, vol. 260, no. 21, pp. 11627–11634, 1985. View at Scopus
  30. J. M. Gutiérrez, “Understanding snake venoms: 50 years of research in Latin America,” Revista De Biologia Tropical, vol. 50, no. 2, pp. 377–394, 2002.
  31. A. S. Kamiguti, J. L. C. Cardoso, R. D. G. Theakston et al., “Coagulopathy and haemorrhage in human victims of Bothrops jararaca envenoming in Brazil,” Toxicon, vol. 29, no. 8, pp. 961–972, 1991. View at Publisher · View at Google Scholar · View at Scopus
  32. J. M. Gutiérrez and C. L. Ownby, “Skeletal muscle degeneration induced by venom phospholipases A 2: insights into the mechanisms of local and systemic myotoxicity,” Toxicon, vol. 42, no. 8, pp. 915–931, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. J. M. Gutierrez, C. L. Ownby, and G. V. Odell, “Skeletal muscle regeneration after myonecrosis induced by crude venom and a myotoxin from the snake Bothrops asper (Fer-de-Lance),” Toxicon, vol. 22, no. 5, pp. 719–731, 1984. View at Scopus
  34. J. B. Harris and M. J. Cullen, “Muscle necrosis caused by snake venoms and toxins,” Electron Microscopy Reviews, vol. 3, no. 2, pp. 183–211, 1990. View at Scopus
  35. D. Mebs and C. L. Ownby, “Myotoxic components of snake venoms: their biochemical and biological activities,” Pharmacology and Therapeutics, vol. 48, no. 2, pp. 223–236, 1990. View at Publisher · View at Google Scholar · View at Scopus
  36. J. M. Gutiérrez, F. Chaves, and L. Cerdas, “Inflammatory infiltrate in skeletal muscle injected with Bothrops asper venom,” Revista de Biologia Tropical, vol. 34, no. 2, pp. 209–214, 1986. View at Scopus
  37. D. F. J. Ketelhut, M. Homem De Mello, E. L. G. Veronese et al., “Isolation, characterization and biological activity of acidic phospholipase A2 isoforms from Bothrops jararacussu snake venom,” Biochimie, vol. 85, no. 10, pp. 983–991, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. R. S. Rodrigues, L. F. M. Izidoro, S. S. Teixeira et al., “Isolation and functional characterization of a new myotoxic acidic phospholipase A2 from Bothrops pauloensis snake venom,” Toxicon, vol. 50, no. 1, pp. 153–165, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. E. C. T. Landucci, R. C. Castro, M. F. Pereira et al., “Mast cell degranulation induced by two phospholipase A2 homologues: dissociation between enzymatic and biological activities,” European Journal of Pharmacology, vol. 343, no. 2-3, pp. 257–263, 1998. View at Publisher · View at Google Scholar · View at Scopus
  40. E. C. T. Landucci, R. C. De Castro, M. Toyama et al., “Inflammatory oedema induced by the Lys-49 phospholipase A2 homologue piratoxin-I in the rat and rabbit. Effect of polyanions and p-bromophenacyl bromide,” Biochemical Pharmacology, vol. 59, no. 10, pp. 1289–1294, 2000. View at Publisher · View at Google Scholar · View at Scopus
  41. B. Lomonte, A. Tarkowski, and L. A. Hanson, “Host response to Bothrops asper snake venom. Analysis of edema formation, inflammatory cells, and cytokine release in a mouse model,” Inflammation, vol. 17, no. 2, pp. 93–105, 1993. View at Scopus
  42. B. S. Vishwanath, R. M. Kini, and T. V. Gowda, “Characterization of three edema-inducing phospholipase A2 enzymes from habu (Trimeresurus flavoviridis) venom and their interaction with the alkaloid aristolochic acid,” Toxicon, vol. 25, no. 5, pp. 501–515, 1987. View at Scopus
  43. J. P. Zuliani, C. M. Fernandes, S. R. Zamuner, J. M. Gutiérrez, and C. F. P. Teixeira, “Inflammatory events induced by Lys-49 and Asp-49 phospholipases A2 isolated from Bothrops asper snake venom: role of catalytic activity,” Toxicon, vol. 45, no. 3, pp. 335–346, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. E. Stylianou and J. Saklatvala, “Interleukin-1,” International Journal of Biochemistry and Cell Biology, vol. 30, no. 10, pp. 1075–1079, 1998. View at Publisher · View at Google Scholar · View at Scopus