About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 949107, 7 pages
http://dx.doi.org/10.1155/2013/949107
Research Article

Microbial Purification of Postfermentation Medium after 1,3-PD Production from Raw Glycerol

Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, ul. Wojska Polskiego 48, 60-527 Poznan, Poland

Received 15 July 2013; Revised 28 August 2013; Accepted 30 August 2013

Academic Editor: Kannan Pakshirajan

Copyright © 2013 Daria Szymanowska-Powałowska et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A.-P. Zeng and W. Sabra, “Microbial production of diols as platform chemicals: recent progresses,” Current Opinion in Biotechnology, vol. 22, no. 6, pp. 749–757, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. A.-P. Zeng, “Pathway and kinetic analysis of 1,3-propanediol production from glycerol fermentation by Clostridium butyricum,” Bioprocess Engineering, vol. 14, no. 4, pp. 169–175, 1996. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Kaur, A. K. Srivastava, and S. Chand, “Advances in biotechnological production of 1,3-propanediol,” Biochemical Engineering Journal, vol. 64, pp. 106–118, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. Z.-L. Xiu and A.-P. Zeng, “Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol,” Applied Microbiology and Biotechnology, vol. 78, no. 6, pp. 917–926, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. A.-I. Qatibi, A. Bories, and J.-L. Garcia, “Sulfate reduction and anaerobic glycerol degradation by a mixed microbial culture,” Current Microbiology, vol. 22, no. 1, pp. 47–52, 1991. View at Scopus
  6. M. F. Temudo, G. Muyzer, R. Kleerebezem, and M. C. M. van Loosdrecht, “Diversity of microbial communities in open mixed culture fermentations: impact of the pH and carbon source,” Applied Microbiology and Biotechnology, vol. 80, no. 6, pp. 1121–1130, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. W. Sabra, D. Dietz, D. Tjahjasari, and A.-P. Zeng, “Biosystems analysis and engineering of microbial consortia for industrial biotechnology,” Engineering in Life Sciences, vol. 10, no. 5, pp. 407–421, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. P. A. Selembo, J. M. Perez, W. A. Lloyd, and B. E. Logan, “Enhanced hydrogen and 1,3-propanediol production from glycerol by fermentation using mixed cultures,” Biotechnology and Bioengineering, vol. 104, no. 6, pp. 1098–1106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Bizukojc, D. Dietz, J. Sun, and A.-P. Zeng, “Metabolic modelling of syntrophic-like growth of a 1,3-propanediol producer, Clostridium butyricum, and a methanogenic archeon, Methanosarcina mazei, under anaerobic conditions,” Bioprocess and Biosystems Engineering, vol. 33, no. 4, pp. 507–523, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Dietz and A. P. Zeng, “Efficient production of 1, 3-propanediol from fermentation of crude glycerol with mixed cultures in a simple medium,” Bioprocess and Biosystems Engineering, 2013. View at Publisher · View at Google Scholar
  11. A. Suau, R. Bonnet, M. Sutren et al., “Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut,” Applied and Environmental Microbiology, vol. 65, no. 11, pp. 4799–4807, 1999. View at Scopus
  12. K. Tamura, J. Dudley, M. Nei, and S. Kumar, “MEGA4: molecular Evolutionary Genetics Analysis (MEGA) software version 4.0,” Molecular Biology and Evolution, vol. 24, no. 8, pp. 1596–1599, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. A.-P. Zeng, A. Ross, H. Biebl, C. Tag, B. Gunzel, and W. D. Deckwer, “Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiella pneumoniae in glycerol fermentation,” Biotechnology and Bioengineering, vol. 44, no. 8, pp. 902–911, 1994. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Kubiak, K. Leja, K. Myszka et al., “Physiological predisposition of various Clostridium species to synthetize 1, 3-propanediol from glycerol,” Process Biochemistry, vol. 47, pp. 308–1319, 2012. View at Publisher · View at Google Scholar
  15. D. Szymanowska-Powałowska, P. Kubiak, and A. Lewicki, “The methane fermentation medium as an attractive source of bacteria from genus Clostridium capable of converting glycerol into 1, 3-propylene glycol,” Journal of Biotechnology, Computational Biology and Bionanotechnology, vol. 93, no. 1, pp. 68–77, 2012.
  16. M. S. Fountoulakis and T. Manios, “Enhanced methane and hydrogen production from municipal solid waste and agro-industrial by-products co-digested with crude glycerol,” Bioresource Technology, vol. 100, no. 12, pp. 3043–3047, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. D. R. Boone, R. W. Castenholz, G. M. Garrity, D. J. Brenner, N. R. Krieg, and J. T. Staley, Bergey’s Manual of Systematic Bacteriology, The Williams & Wilkins Company, Baltimore, Md, USA, 2005.
  18. H. Biebl, “Glycerol fermentation of 1,3-propanediol by Clostridium butyricum. Measurement of product inhibition by use of a pH-auxostat,” Applied Microbiology and Biotechnology, vol. 35, no. 6, pp. 701–705, 1991. View at Scopus
  19. T. Colin, A. Bories, C. Lavigne, and G. Moulin, “Effects of acetate and butyrate during glycerol fermentation by Clostridium butyricum,” Current Microbiology, vol. 43, no. 4, pp. 238–243, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Kuroda, Y. Sugimoto, T. Funahashi, and J. Sekiguchi, “Genetic structure, isolation and characterization of a Bacillus licheniformis cell wall hydrolase,” Molecular and General Genetics, vol. 234, no. 1, pp. 129–137, 1992. View at Scopus
  21. S. Torres, A. Pandey, and G. R. Castro, “Organic solvent adaptation of Gram positive bacteria: applications and biotechnological potentials,” Biotechnology Advances, vol. 29, no. 4, pp. 442–452, 2011. View at Publisher · View at Google Scholar · View at Scopus