About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 952416, 10 pages
http://dx.doi.org/10.1155/2013/952416
Research Article

Gene Gun Bombardment with DNA-Coated Golden Particles Enhanced the Protective Effect of a DNA Vaccine Based on Thioredoxin Glutathione Reductase of Schistosoma japonicum

Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, 518 Ziyue Road, Minhang, Shanghai 200241, China

Received 18 June 2012; Revised 19 August 2012; Accepted 9 September 2012

Academic Editor: Luis I. Terrazas

Copyright © 2013 Yan Cao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Zeng, X. Yang, S. Meng, et al., “Awareness and knowledge of schistosomiasis infection and prevention in the, “Three Gorges Dam” reservoir area: a cross-sectional study on local residents and health personnel,” Acta Tropica, vol. 120, pp. 238–244, 2011.
  2. A. Fenwick and J. P. Webster, “Schistosomiasis: challenges for control, treatment and drug resistance,” Current Opinion in Infectious Diseases, vol. 19, no. 6, pp. 577–582, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. X. He, B. Salafsky, and K. Ramaswamy, “Host-parasite relationships of Schistosoma japonicum in mammalian hosts,” Trends in Parasitology, vol. 17, no. 7, pp. 320–324, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Zhou, Y. Li, and X. Yang, “Schistosomiasis control in China,” World Health Forum, vol. 15, no. 4, pp. 387–389, 1994. View at Scopus
  5. D. M. Renquist, A. J. Johnson, J. C. Lewis, and D. J. Johnson, “A natural case of Schistosoma mansoni in the chimpanzee (Pan troglodytes versus),” Laboratory Animal Science, vol. 25, no. 6, pp. 763–768, 1975. View at Scopus
  6. C. V. Yason and M. N. Novilla, “Clinical and pathologic features of experimental Schistosoma japonicum infection in pigs,” Veterinary Parasitology, vol. 17, no. 1, pp. 47–64, 1984. View at Publisher · View at Google Scholar · View at Scopus
  7. D. J. Gray, G. M. Williams, Y. Li, and D. P. McManus, “Transmission dynamics of Schistosoma japonicum in the lakes and marshlands of China,” PLoS ONE, vol. 3, no. 12, Article ID e4058, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. Z. S. Wu, T. G. Wang, X. S. Zhang et al., “Snail control by using soil pasting mixed with niclosamide,” Zhonghua Yu Fang Yi Xue Za Zhi, vol. 42, no. 8, pp. 569–573, 2008. View at Scopus
  9. M. Doenhoff, Q. Bickle, J. Bain, G. Webbe, and G. Nelson, “Factors affecting the acquisition of resistance against Schistosoma mansoni in the mouse. V. Reduction in the degree of resistance to reinfection after chemotherapeutic elimination of recently patent primary infections,” Journal of Helminthology, vol. 54, no. 1, pp. 7–16, 1980. View at Scopus
  10. E. S. Reda, A. Ouhtit, S. H. Abdeen, and E. A. El-Shabasy, “Structural changes of Schistosoma mansoni adult worms recovered from C57BL/6 mice treated with radiation-attenuated vaccine and/or praziquantel against infection,” Parasitology Research, vol. 110, no. 2, pp. 979–992, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. D. P. McManus and J. P. Dalton, “Vaccines against the zoonotic trematodes Schistosoma japonicum, Fasciola hepatica and Fasciola gigantica,” Parasitology, vol. 133, supplement, pp. S43–S61, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. S. C. Oliveira, C. T. Fonseca, F. C. Cardoso, L. P. Farias, and L. C. C. Leite, “Recent advances in vaccine research against schistosomiasis in Brazil,” Acta Tropica, vol. 108, no. 2-3, pp. 256–262, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. S. P. Wang, X. C. Chen, and D. M. Gao, “Research progress on schistosome vaccine and prospect of its application in China,” Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi, vol. 27, no. 5, pp. 402–411, 2009. View at Scopus
  14. A. El Amir, “Effect of mouse strain on humoral responses to Schistosoma mansoni irradiated cercariae vaccine,” The Egyptian Journal of Immunology, vol. 15, no. 1, pp. 51–63, 2008. View at Scopus
  15. A. A. Da'Dara, P. J. Skelly, M. Wang, and D. A. Harn, “Immunization with plasmid DNA encoding the integral membrane protein, Sm23, elicits a protective immune response against schistosome infection in mice,” Vaccine, vol. 20, no. 3-4, pp. 359–369, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Zhu, J. Ren, A. Da'dara et al., “The protective effect of a Schistosoma japonicum Chinese strain 23 kDa plasmid DNA vaccine in pigs is enhanced with IL-12,” Vaccine, vol. 23, no. 1, pp. 78–83, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Weiss, S. Scheiblhofer, J. Freund, F. Ferreira, I. Livey, and J. Thalhamer, “Gene gun bombardment with gold particles displays a particular Th2-promoting signal that over-rules the Th1-inducing effect of immunostimulatory CpG motifs in DNA vaccines,” Vaccine, vol. 20, no. 25-26, pp. 3148–3154, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. M. K. Jones, “Structure and diversity of cestode epithelia,” International Journal for Parasitology, vol. 28, no. 6, pp. 913–923, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. M. K. Jones, G. N. Gobert, L. Zhang, P. Sunderland, and D. P. McManus, “The cytoskeleton and motor proteins of human schistosomes and their roles in surface maintenance and host-parasite interactions,” BioEssays, vol. 26, no. 7, pp. 752–765, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Loukas, M. Tran, and M. S. Pearson, “Schistosome membrane proteins as vaccines,” International Journal for Parasitology, vol. 37, no. 3-4, pp. 257–263, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. M. H. Tran, M. S. Pearson, J. M. Bethony et al., “Tetraspanins on the surface of Schistosoma mansoni are protective antigens against schistosomiasis,” Nature Medicine, vol. 12, no. 7, pp. 835–840, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. J. J. Van Hellemond, K. Retra, J. F. H. M. Brouwers et al., “Functions of the tegument of schistosomes: clues from the proteome and lipidome,” International Journal for Parasitology, vol. 36, no. 6, pp. 691–699, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Zhang, Y. Han, Z. Zhu et al., “Cloning, expression, and characterization of Schistosoma japonicum tegument protein phosphodiesterase-5,” Parasitology Research, vol. 110, no. 2, pp. 775–786, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Zhang, W. N. Zhang, C. P. Ren, M. Liu, and J. J. Shen, “Construction of DNA vaccine pcDNA3.1(+)/tetraspanin 2-A against Schistosoma japonicum and its immune-protective effect in mice,” Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi, vol. 27, no. 6, pp. 534–536, 2009. View at Scopus
  25. S. Liu, J. Cheng, C. Tang et al., “Construction and expression of DNA vaccine pIRES-Sj97-Sj14-Sj26 and its immunogenicity in mice,” Journal of Huazhong University of Science and Technology, vol. 27, no. 6, pp. 625–629, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Kasny, L. Mikes, K. Doleckova, et al., “Cathepsins B1 and B2 of Trichobilharzia SPP., bird schistosomes causing cercarial dermatitis,” Advances in Experimental Medicine and Biology, vol. 712, pp. 136–154, 2011.
  27. X. H. Li, J. P. Cao, L. H. Tang et al., “Protective efficacy induced by dendritic cells pulsed with GST in combination with CpG oligodeoxynucleotide against Schistosoma japonicum infection,” Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi, vol. 28, no. 3, pp. 185–189, 2010. View at Scopus
  28. Y. Zhu, F. Lu, Y. Dai et al., “Synergistic enhancement of immunogenicity and protection in mice against Schistosoma japonicum with codon optimization and electroporation delivery of SjTPI DNA vaccines,” Vaccine, vol. 28, no. 32, pp. 5347–5355, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Han, “Characterization of thioredoxin glutathione reductase in Schiotosoma japonicum,” Parasitology International, vol. 61, no. 3, pp. 475–480, 2011.
  30. L. Song, J. Li, S. Xie, et al., “Thioredoxin glutathione reductase as a novel drug target: evidence from Schistosoma japonicum,” PLoS ONE, vol. 7, Article ID e31456, 2012.
  31. M. O. Diniz and L. C. S. Ferreira, “Enhanced anti-tumor effect of a gene gun-delivered DNA vaccine encoding the human papillomavirus type 16 oncoproteins genetically fused to the herpes simplex virus glycoprotein D,” Brazilian Journal of Medical and Biological Research, vol. 44, no. 5, pp. 421–427, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. G. Ahmad, W. Zhang, W. Torben et al., “Protective and antifecundity effects of Sm-p80-based DNA vaccine formulation against Schistosoma mansoni in a nonhuman primate model,” Vaccine, vol. 27, no. 21, pp. 2830–2837, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. A. N. Kuntz, E. Davioud-Charvet, A. A. Sayed et al., “Thioredoxin glutathione reductase from Schistosoma mansoni: an essential parasite enzyme and a key drug target,” PLoS Medicine, vol. 4, no. 6, article 206, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. W. A. Lea, A. Jadhav, G. Rai et al., “A 1,536-well-based kinetic HTS assay for inhibitors of Schistosoma mansoni thioredoxin glutathione reductase,” Assay and Drug Development Technologies, vol. 6, no. 4, pp. 551–555, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Šíma, M. Šmahel, F. Jelínek, and V. Vonka, “DNA vaccine against friend erythroleukaemia virus,” Folia Biologica, vol. 48, no. 2, pp. 43–50, 2002. View at Scopus
  36. A. Yoshida, T. Nagata, M. Uchijima, T. Higashi, and Y. Koide, “Advantage of gene gun-mediated over intramuscular inoculation of plasmid DNA vaccine in reproducible induction of specific immune responses,” Vaccine, vol. 18, no. 17, pp. 1725–1729, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Gurunathan, C. Y. Wu, B. L. Freidag, and R. A. Seder, “DNA vaccines: a key for inducing long-term cellular immunity,” Current Opinion in Immunology, vol. 12, no. 4, pp. 442–447, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. J. R. Aldridge, E. C. Johnson, and R. E. Kuhn, “CpG stimulates protective immunity in Balb/cJ mice infected with larval Taenia crassiceps,” Journal of Parasitology, vol. 96, no. 5, pp. 920–928, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Stewart, G. Thom, M. Levens, et al., “A variant human IgG1-Fc mediates improved ADCC,” Protein Engineering, Design & Selection, vol. 24, no. 9, pp. 671–678, 2011.
  40. A. A. Da'dara, P. J. Skelly, M. Fatakdawala, S. Visovatti, E. Eriksson, and D. A. Harn, “Comparative efficacy of the Schistosoma mansoni nucleic acid vaccine, Sm23, following microseeding or gene gun delivery,” Parasite Immunology, vol. 24, no. 4, pp. 179–187, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. J. J. Kim, J. S. Yang, L. Montaner, D. J. Lee, A. A. Chalian, and D. B. Weiner, “Coimmunization with IFN-γ or IL-2, but not IL-13 or IL-4 cDNA can enhance Th1-type DNA vaccine-induced immune responses in vivo,” Journal of Interferon and Cytokine Research, vol. 20, no. 3, pp. 311–319, 2000. View at Publisher · View at Google Scholar · View at Scopus
  42. T. Tanaka, J. Hu-Li, R. A. Seder, B. F. D. S. Groth, and W. E. Paul, “Interleukin 4 suppresses interleukin 2 and interferon γ production by naive T cells stimulated by accessory cell-dependent receptor engagement,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 13, pp. 5914–5918, 1993. View at Scopus
  43. P. M. Sawant, P. C. Verma, P. K. Subudhi et al., “Immunomodulation of bivalent Newcastle disease DNA vaccine induced immune response by co-delivery of chicken IFN-γ and IL-4 genes,” Veterinary Immunology and Immunopathology, vol. 144, pp. 36–44, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. K. J. Ishii, W. R. Weiss, M. Ichino, D. Verthelyi, and D. M. Klinman, “Activity and safety of DNA plasmids encoding IL-4 and IFN gamma,” Gene Therapy, vol. 6, no. 2, pp. 237–244, 1999. View at Publisher · View at Google Scholar · View at Scopus