About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 952641, 10 pages
Research Article

Poly β-Hydroxybutyrate Production by Bacillus subtilis NG220 Using Sugar Industry Waste Water

1Department of Microbiology, Kurukshetra University, Kurukshetra 136119, India
2Department of Biotechnology, Kurukshetra University, Kurukshetra 136119, India

Received 4 April 2013; Revised 16 June 2013; Accepted 17 June 2013

Academic Editor: Kannan Pakshirajan

Copyright © 2013 Gulab Singh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. J. Anderson and E. A. Dawes, “Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates,” Microbiological Reviews, vol. 54, no. 4, pp. 450–472, 1990. View at Scopus
  2. E. R. Howells, “Opportunities in biotechnology for the chemical industry,” Chemistry & Industry, vol. 8, pp. 508–511, 1982.
  3. C. Wood, Environment Impact Asseesment: A Comparative Review, Longman, Harlow, UK, 1995.
  4. S. Banziger, P. D. N. Tobler, and H. Brandl H, The Formation of Reserve Polymers in Bacillus megaterium, Microbial Ecology Course, University of Zurich, Zurich, Switzerland, 2001.
  5. J. H. Law and R. A. Slepecky, “Assay of poly-beta-hydroxybutyric acid,” Journal of Bacteriology, vol. 82, pp. 33–36, 1961. View at Scopus
  6. I. Y. Lee, H. N. Chang, and Y. H. Park, “A simple method for recovery of microbial poly β-hydroxybutrate by alkaline solution treatment,” Journal of Microbiology and Biotechnology, vol. 5, pp. 238–240, 1995.
  7. H. Yoshie, S. Ozasa, K. Adachi, H. Nagai, M. Shiga, and Y. Nakamura, “Nuclear magnetic resonance of 59Co in Gd2Co7,” Journal of Magnetism and Magnetic Materials, vol. 104–107, no. 2, pp. 1449–1450, 1992. View at Scopus
  8. L. M. W. K. Gunaratne, R. A. Shanks, and G. Amarasinghe, “Thermal history effects on crystallisation and melting of poly(3-hydroxybutyrate),” Thermochimica Acta, vol. 423, no. 1-2, pp. 127–135, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Schubert, N. Kruger, and A. Steinbuchel, “Molecular analysis of the Alcaligenes eutrophus poly(3-hydroxybutyrate) biosynthetic operon: identication of the N terminus of poly(3-hydroxybutyrate) synthase and identification of the promoter,” Journal of Bacteriology, vol. 173, no. 1, pp. 168–175, 1991. View at Scopus
  10. S. O. Kulkarni, P. P. Kanekar, J. P. Jog et al., “Characterisation of copolymer, poly (hydroxybutyrate-co-hydroxyvalerate) (PHB-co-PHV) produced by Halomonas campisalis (MCM B-1027), its biodegradability and potential application,” Bioresource Technology, vol. 102, no. 11, pp. 6625–6628, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Wang, C. Song, W. Mizuno et al., “Estimation on biodegradability of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB/V) and numbers of aerobic PHB/V degrading microorganisms in different natural environments,” Journal of Polymers and the Environment, vol. 13, no. 1, pp. 39–45, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Thirumala, S. V. Reddy, and S. K. Mahmood, “Production and characterization of PHB from two novel strains of Bacillus spp. isolated from soil and activated sludge,” Journal of Industrial Microbiology and Biotechnology, vol. 37, no. 3, pp. 271–278, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Mitomo, P. J. Barham, and A. Keller, “Crystallization and morphology of poly(β-hydroxybutyrate) and its copolymer,” Polymer Journal, vol. 19, no. 11, pp. 1241–1253, 1987. View at Scopus
  14. M. Matavulj and H. P. Molitoris, “Fungal degradation of polyhydroxyalkanoates and a semiquantitative assay for screening their degradation by terrestrial fungi,” FEMS Microbiology Reviews, vol. 103, no. 2-4, pp. 323–331, 1992. View at Scopus
  15. Z. N. Yüksekdaǧ, B. Aslim, Y. Beyatli, and N. Mercan, “Effect of carbon and nitrogen sources and incubation times on poly-beta-hydroxybutyrate (PHB) synthesis by Bacillus subtilis 25 and Bacillus megaterium 12,” African Journal of Biotechnology, vol. 3, no. 1, pp. 63–66, 2004. View at Scopus
  16. B. Aslim, Z. N. Yuksekdag, and Y. Beyatli, “Determination of growth quantities of certain Bacillus species isolated from soil,” Turkish Electronic Journal of Biotechnology, pp. 24–30, 2002.
  17. P. Tavernier, J.-C. Portais, J. E. Nava Saucedo, J. Courtois, B. Courtois, and J.-N. Barbotin, “Exopolysaccharide and poly-β-hydroxybutyrate coproduction in two Rhizobium meliloti strains,” Applied and Environmental Microbiology, vol. 63, no. 1, pp. 21–26, 1997. View at Scopus
  18. S. Shivakumar, “Polyhydroxybutyrate (PHB) production using agro-industrial residue as substrate by Bacillus thuringiensis IAM 12077,” International Journal of ChemTech Research, vol. 4, no. 3, pp. 1158–1162, 2012.
  19. S. Kumbhakar, P. K. Singh, and A. S. Vidyarthi, “Screening of root nodule bacteria for the production of polyhydroxyalkanoate (PHA) and the study of parameters influencing the PHA accumulation,” African Journal of Biotechnology, vol. 11, no. 31, pp. 7934–7946, 2012.
  20. N. V. Ramadas, S. K. Singh, C. R. Soccol, and A. Pandey, “Polyhydroxybutyrate production using agro-industrial residue as substrate by Bacillus sphaericus NCIM 5149,” Brazilian Archives of Biology and Technology, vol. 52, no. 1, pp. 17–23, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Hori, M. Kaneko, Y. Tanji, X.-H. Xing, and H. Unno, “Construction of self-disruptive Bacillus megaterium in response to substrate exhaustion for polyhydroxybutyrate production,” Applied Microbiology and Biotechnology, vol. 59, no. 2-3, pp. 211–216, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. Q. Wu, H. Huang, G. Hu, J. Chen, K. P. Ho, and G.-Q. Chen, “Production of poly-3-hydroxybutrate by Bacillus sp. JMa5 cultivated in molasses media,” Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, vol. 80, no. 2, pp. 111–118, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Singh, “Cane sugar industry in India,” in Proceedings of the XXIII ISSCT Congress, New Delhi, India, 1999.
  24. S. Khanna and A. K. Srivastava, “Statistical media optimization studies for growth and PHB production by Ralstonia eutropha,” Process Biochemistry, vol. 40, no. 6, pp. 2173–2182, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. A. A. Koutinas, Y. Xu, R. Wang, and C. Webb, “Polyhydroxybutyrate production from a novel feedstock derived from a wheat-based biorefinery,” Enzyme and Microbial Technology, vol. 40, no. 5, pp. 1035–1044, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. M.-S. Kim, J.-S. Baek, and J. K. Lee, “Comparison of H2 accumulation by Rhodobacter sphaeroides KD131 and its uptake hydrogenase and PHB synthase deficient mutant,” International Journal of Hydrogen Energy, vol. 31, no. 1, pp. 121–127, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. Z. Liangqi, X. Jingfan, F. Tao, and W. Haibin, “Synthesis of poly(3-hydroxybutyrate-co-3-hydroxyoctanoate) by a Sinorhizobium fredii strain,” Letters in Applied Microbiology, vol. 42, no. 4, pp. 344–349, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Sangkharak and P. Prasertsan, “Nutrient optimization for production of polyhydroxybutyrate from halotolerant photosynthetic bacteria cultivated under aerobic-dark condition,” Electronic Journal of Biotechnology, vol. 11, no. 3, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. E. R. Coats, F. J. Loge, M. P. Wolcott, K. Englund, and A. G. McDonald, “Synthesis of polyhydroxyalkanoates in municipal wastewater treatment,” Water Environment Research, vol. 79, no. 12, pp. 2396–2403, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. A. P. Bonartsev, V. L. Myshkina, D. A. Nikolaeva et al., “Biosynthesis, biodegradation, and application of poly(3-hydroxybutyrate) and its copolymers: natural polyesters produced by diazotrophic bacteria,” in Communicating Current Research and Educational Topics and Trends in Applied Microbiology, A. Méndez-Vilas, Ed., pp. 295–307, Formatex, Badajoz, Spain, 2007.
  31. C. A. Woolnough, L. H. Yee, T. Charlton, and L. J. R. Foster, “Environmental degradation and biofouling of ‘green’ plastics including short and medium chain length polyhydroxyalkanoates,” Polymer International, vol. 59, no. 5, pp. 658–667, 2010. View at Publisher · View at Google Scholar · View at Scopus