About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 954542, 9 pages
http://dx.doi.org/10.1155/2013/954542
Research Article

Improvement of Medium Chain Fatty Acid Content and Antimicrobial Activity of Coconut Oil via Solid-State Fermentation Using a Malaysian Geotrichum candidum

1Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
2Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
3Iranian Fisheries Research Organization, West Fatemi, Tehran 1411816616, Iran
4Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
5Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

Received 8 April 2013; Revised 19 June 2013; Accepted 28 June 2013

Academic Editor: Bidur Prasad Chaulagain

Copyright © 2013 Anahita Khoramnia et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. B. Che Man and A. M. Marina, “Medium chain triacylglycerol,” in Nutraceutical and Specialty Lipids and Their Co-Products, F. Shahidi, Ed., Taylor & Francis Group, Boca Raton, Fla, USA, 2006.
  2. S. Sado Kamdem, M. E. Guerzoni, J. Baranyi, and C. Pin, “Effect of capric, lauric and α-linolenic acids on the division time distributions of single cells of Staphylococcus aureus,” International Journal of Food Microbiology, vol. 128, no. 1, pp. 122–128, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. S. L. Sado-Kamdem, L. Vannini, and M. E. Guerzoni, “Effect of α-linolenic, capric and lauric acid on the fatty acid biosynthesis in Staphylococcus aureus,” International Journal of Food Microbiology, vol. 129, no. 3, pp. 288–294, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Nobmann, A. Smith, J. Dunne, G. Henehan, and P. Bourke, “The antimicrobial efficacy and structure activity relationship of novel carbohydrate fatty acid derivatives against Listeria spp. and food spoilage microorganisms,” International Journal of Food Microbiology, vol. 128, no. 3, pp. 440–445, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. F. Dohme, F. Machmüller, F. Sutter, and M. Kreuzer, “Digestive and metabolic utilization of lauric, myristic and stearic acid in cows, and associated effects on milk fat quality,” Archives of Animal Nutrition, vol. 58, no. 2, pp. 99–116, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. M. E. Guerzoni, R. Lanciotti, L. Vannini et al., “Variability of the lipolytic activity in Yarrowia lipolytica and its dependence on environmental conditions,” International Journal of Food Microbiology, vol. 69, no. 1-2, pp. 79–89, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. J. J. Kabara, “Antimicrobial agents derived from fatty acids,” Journal of the American Oil Chemists' Society, vol. 61, no. 2, pp. 397–403, 1984. View at Publisher · View at Google Scholar · View at Scopus
  8. K. A. Soni, R. Nannapaneni, M. W. Schilling, and V. Jackson, “Bactericidal activity of lauric arginate in milk and Queso Fresco cheese against Listeria monocytogenes cold growth,” Journal of Dairy Science, vol. 93, no. 10, pp. 4518–4525, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. A. N. Hristov, M. V. Pol, M. Agle et al., “Effect of lauric acid and coconut oil on ruminal fermentation, digestion, ammonia losses from manure, and milk fatty acid composition in lactating cows,” Journal of Dairy Science, vol. 92, no. 11, pp. 5561–5582, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. W. K. Mun, N. A. Rahman, S. Abd-Aziz, V. Sabaratnam, and M. A. Hassan, “Enzymatic hydrolysis of palm oil mill effluent solid using mixed cellulases from locally isolated fungi,” Research Journal of Microbiology, vol. 3, pp. 474–481, 2008.
  11. B. Saad, C. W. Ling, M. S. Jab et al., “Determination of free fatty acids in palm oil samples using non-aqueous flow injection titrimetric method,” Food Chemistry, vol. 102, no. 4, pp. 1407–1414, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Destain, D. Roblain, and P. Thonart, “Improvement of lipase production from Yarrowia lipolytica,” Biotechnology Letters, vol. 19, no. 2, pp. 105–107, 1997. View at Publisher · View at Google Scholar · View at Scopus
  13. J. J. Kabara, D. M. Swieczkowski, A. J. Conley, and J. P. Truant, “Fatty acids and derivatives as antimicrobial agents,” Antimicrobial Agents and Chemotherapy, vol. 2, no. 1, pp. 23–28, 1972. View at Scopus
  14. K. Hernandez, E. Garcia-Verdugo, R. Porcar, and R. Fernandez-Lafuente, “Hydrolysis of triacetin catalyzed by immobilized lipases: effect of the immobilization protocol and experimental conditions on diacetin yield,” Enzyme and Microbial Technology, vol. 48, no. 6-7, pp. 510–517, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Eliskases-Lechner, M. Gueguen, and J. M. Panoff, “Yeasts and molds-Geotrichum candidum,” in Encyclopedia of Dairy Sciences, J. W. Fuquay, Ed., Academic Press, San Diego, Calif, USA, 2nd edition, 2011.
  16. R. Boutrou and M. Guéguen, “Interests in Geotrichum candidum for cheese technology,” International Journal of Food Microbiology, vol. 102, no. 1, pp. 1–20, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Sabu, S. Sarita, A. Pandey, B. Bogar, G. Szakacs, and C. R. Soccol, “Solid-state fermentation for production of phytase by Rhizopus oligosporus,” Applied Biochemistry and Biotechnology, vol. 102-103, pp. 251–260, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Khoramnia, A. Ebrahimpour, B. K. Beh, and O. M. Lai, “Production of a solvent, detergent, and thermotolerant lipase by a newly isolated Acinetobacter sp. in submerged and solid-state fermentations,” Journal of Biomedicine and Biotechnology, vol. 2011, Article ID 702179, 12 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Pandey, L. Ashakumary, and P. Selvakumar, “Copra waste—a novel substrate for solid-state fermentation,” Bioresource Technology, vol. 51, no. 2-3, pp. 217–220, 1995. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Aberkane, M. Cuenca-Estrella, A. Gomez-Lopez et al., “Comparative evaluation of two different methods of inoculum preparation for antifungal susceptibility testing of filamentous fungi,” Journal of Antimicrobial Chemotherapy, vol. 50, no. 5, pp. 719–722, 2002. View at Scopus
  21. E. Rigo, J. L. Ninow, M. Di Luccio et al., “Lipase production by solid fermentation of soybean meal with different supplements,” LWT, vol. 43, no. 7, pp. 1132–1137, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Y. Kwon and J. S. Rhee, “A simple and rapid colorimetric method for determination of free fatty acids for lipase assay,” Journal of the American Oil Chemists' Society, vol. 63, no. 1, pp. 89–92, 1986. View at Publisher · View at Google Scholar · View at Scopus
  23. I. Nor Hayati, Y. B. Che Man, C. P. Tan, and I. Nor Aini, “Thermal behavior of concentrated oil-in-water emulsions based on soybean oil and palm kernel olein blends,” Food Research International, vol. 42, no. 8, pp. 1223–1232, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Patgaonkar, C. Aranha, G. Bhonde, and K. V. R. Reddy, “Identification and characterization of anti-microbial peptides from rabbit vaginal fluid,” Veterinary Immunology and Immunopathology, vol. 139, no. 2–4, pp. 176–186, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Ghanbari, A. Ebrahimpour, A. Abdul-Hamid, A. Ismail, and N. Saari, “Actinopyga lecanora hydrolysates as natural antibacterial agents,” International Journal of Molecular Sciences, vol. 13, pp. 16796–16811, 2012.
  26. M. K. Tahoun, “Fatty acid and position specificities of an intracellular lipase from Geotrichum candidum,” Fat Science and Technology, vol. 89, pp. 318–332, 1987.
  27. J. Lecocq, Interactions entre Geotrichum candidum et Brevibacterium linens Influence de facteurs intervenant entechnologie fromagère [Ph.D. thesis], Universitè de Caen, 1991.
  28. M. K. Tahoun, E. Mostafa, R. Mashaly, and S. Abou-Donia, “Lipase induction in Geotrichum candidum,” Milchwissenschaft, vol. 37, pp. 86–88, 1982.
  29. P. Gervais and P. Molin, “The role of water in solid-state fermentation,” Biochemical Engineering Journal, vol. 13, no. 2-3, pp. 85–101, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Rodríguez Couto and M. A. Sanromán, “Application of solid-state fermentation to ligninolytic enzyme production,” Biochemical Engineering Journal, vol. 22, no. 3, pp. 211–219, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Khoramnia, O. M. Lai, A. Ebrahimpour, C. J. Tanduba, T. S. Voon, and S. Mukhlis, “Thermostable lipase from a newly isolated Staphylococcus xylosus strain; process optimization and characterization using RSM and ANN,” Electronic Journal of Biotechnology, vol. 13, no. 5, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. M. L. M. Fernandes, N. Krieger, A. M. Baron, P. P. Zamora, L. P. Ramos, and D. A. Mitchell, “Hydrolysis and synthesis reactions catalysed by Thermomyces lanuginosa lipase in the AOT/Isooctane reversed micellar system,” Journal of Molecular Catalysis B, vol. 30, no. 1, pp. 43–49, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Martínez-Ruiz, H. S. García, G. Saucedo-Castañeda, and E. Favela-Torres, “Organic phase synthesis of ethyl oleate using lipases produced by solid-state fermentation,” Applied Biochemistry and Biotechnology, vol. 151, no. 2-3, pp. 393–401, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. G. Parfene, V. Horincar, A. K. Tyagi, A. Malik, and G. Bahrim, “Production of medium chain saturated fatty acids with enhanced antimicrobial activity from crude coconut fat by solid state cultivation of Yarrowia lipolytica,” Food Chemistry, vol. 136, pp. 1345–1349, 2013.
  35. J. M. Carroll, United States of America Patent No. Rumbaugh, Graves, Donohue & Raymond, 1980.
  36. A. Ruzin and R. P. Novick, “Equivalence of lauric acid and glycerol monolaurate as inhibitors of signal transduction in Staphylococcus aureus,” Journal of Bacteriology, vol. 182, no. 9, pp. 2668–2671, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. B. W. Petschow, R. P. Batema, R. D. Talbott, and L. L. Ford, “Impact of medium-chain monoglycerides on intestinal colonisation by Vibrio cholerae or enterotoxigenic Escherichia coli,” Journal of Medical Microbiology, vol. 47, no. 5, pp. 383–389, 1998. View at Scopus
  38. M. Hayashi, “Feed additive for livestock and feed for livestock,” United States Patent 5, 462, 967, 1995.
  39. J. J. Kabara, “Fatty acids and dertivatives as antimicrobial agents,” in The Pharmacological Effect of Lipids, pp. 1–14, American Oil Chemists' Society, Champaign, Ill, USA, 1978.
  40. G. Bergsson, J. Arnfinnsson, Ó. Steingrímsson, and H. Thormar, “In vitro killing of Candida albicans by fatty acids and monoglycerides,” Antimicrobial Agents and Chemotherapy, vol. 45, no. 11, pp. 3209–3212, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. L.-L. Wang and E. A. Johnson, “Inhibition of Listeria monocytogenes by fatty acids and monoglycerides,” Applied and Environmental Microbiology, vol. 58, no. 2, pp. 624–629, 1992. View at Scopus
  42. K. A. Glass and E. A. Johnson, “Antagonistic effect of fat on the antibotulinal activity of food preservatives and fatty acids,” Food Microbiology, vol. 21, no. 6, pp. 675–682, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Khoramnia, A. Ebrahimpour, B. K. Beh, and O. M. Lai, “In situ bioconversion of coconut oil via coconut solid state fermentation by Geotrichum candidum ATCC, 34614,” Food and Bioprocess Technology, 2013. View at Publisher · View at Google Scholar
  44. D. Yang, D. Pornpattananangkul, T. Nakatsuji et al., “The antimicrobial activity of liposomal lauric acids against Propionibacterium acnes,” Biomaterials, vol. 30, no. 30, pp. 6035–6040, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. E. Freese, C. W. Sheu, and E. Galliers, “Function of lipophilic acids as antimicrobial food additives,” Nature, vol. 241, no. 5388, pp. 321–325, 1973. View at Publisher · View at Google Scholar · View at Scopus
  46. G. Goel, K. Arvidsson, B. Vlaeminck, G. Bruggeman, K. Deschepper, and V. Fievez, “Effects of capric acid on rumen methanogenesis and biohydrogenation of linoleic and -linolenic acid,” Animal, vol. 3, no. 6, pp. 810–816, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. T. Nakatsuji, M. C. Kao, and J. Y. Fang, “Antimicrobia property of lauric acid against P. acnea, its theraputical potential for inflammatory acnea vulgaris,” Journal of Investigative Dermatology, vol. 124, pp. 2480–2488, 2009.
  48. T. Kitahara, Y. Aoyama, Y. Hirakata et al., “In vitro activity of lauric acid or myristylamine in combination with six antimicrobial agents against methicillin-resistant Staphylococcus aureus (MRSA),” International Journal of Antimicrobial Agents, vol. 27, no. 1, pp. 51–57, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. K. A. Soni, M. Desai, A. Oladunjoye, F. Skrobot, and R. Nannapaneni, “Reduction ofListeria monocytogenes in queso fresco cheese by a combination of listericidal and listeriostatic GRAS antimicrobials,” International Journal of Food Microbiology, vol. 155, no. 1-2, pp. 82–88, 2012. View at Publisher · View at Google Scholar · View at Scopus