About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 958510, 6 pages
http://dx.doi.org/10.1155/2013/958510
Research Article

Identification and Characterization of DM1 Patients by a New Diagnostic Certified Assay: Neuromuscular and Cardiac Assessments

1Research Laboratories-Molecular Biology, IRCCS Policlinico San Donato, Piazza E. Malan 2, San Donato Milanese, 20097 Milan, Italy
2Department of Neurology, Stroke Unit and Centre for Neuromuscular Disease, IRCCS Policlinico San Donato, Milan, Italy
3Service Lab, Fleming Research, Milan, Italy
4Service of Laboratory Medicine, IRCCS Policlinico San Donato, Milan, Italy

Received 26 October 2012; Accepted 19 February 2013

Academic Editor: Yasemin Alanay

Copyright © 2013 Rea Valaperta et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. D. Brook, M. E. McCurrach, H. G. Harley et al., “Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member,” Cell, vol. 68, no. 4, pp. 799–808, 1992. View at Scopus
  2. M. Mahadevan, C. Tsilfidis, L. Sabourin et al., “Myotonic dystrophy mutation: an unstable CTG repeat in the 3' untranslated region of the gene,” Science, vol. 255, no. 5049, pp. 1253–1255, 1992. View at Scopus
  3. Y. H. Fu, A. Pizzuti Jr., R. G. Fenwick et al., “An unstable triplet repeat in a gene related to myotonic muscular dystrophy,” Science, vol. 255, no. 5049, pp. 1256–1258, 1992. View at Scopus
  4. T. Kurihara, “New classification and treatment for myotonic disorders,” Internal Medicine, vol. 44, no. 10, pp. 1027–1032, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Meola and E. Bugiardini, “Myotonic dystrophy,” in Medlink Neurology, 2011.
  6. S. P. Chaudhry and W. H. Frishman, “Myotonic dystrophies and the heart,” Cardiology in Review, vol. 20, no. 1, pp. 1–3, 2011.
  7. E. J. Kamsteeg, W. Kress, C. Catalli et al., “Best practice guidelines and recommendations on the molecular diagnosis of myotonic dystrophy types 1 and 2,” European Journal of Human Genetics, vol. 20, no. 12, pp. 1203–1208, 2012. View at Publisher · View at Google Scholar
  8. L. Martorell, D. G. Monckton, A. Sanchez, A. Lopez de Munain, and M. Baiget, “Frequency and stability of the myotonic dystrophy type 1 premutation,” Neurology, vol. 56, no. 3, pp. 328–335, 2001. View at Scopus
  9. The International Myotonic Dystrophy Consortium (IDMC), “New nomenclature and DNA testing guidelines for myotonic dystrophy type 1 (DM1),” Neurology, vol. 54, no. 6, pp. 1218–1221, 2000. View at Scopus
  10. T. Ashizawa and P. S. Sarkar, “Myotonic dystrophy types 1 and 2,” Handbook of Clinical Neurology, vol. 101, pp. 193–237, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. C. J. Höweler, H. F. Busch, J. P. Geraedts, M. F. Niermeijer, and A. Staal, “Anticipation in myotonic dystrophy: fact or fiction?” Brain, vol. 112, pp. 3–797, 1989. View at Scopus
  12. H. G. Harley, S. A. Rundle, J. C. MacMillan et al., “Size of the unstable CTG repeat sequence in relation to phenotype and parental transmission in myotonic dystrophy,” American Journal of Human Genetics, vol. 52, no. 6, pp. 1164–1174, 1993. View at Scopus
  13. N. De Temmerman, K. Sermon, S. Seneca et al., “Intergenerational instability of the expanded CTG repeat in the DMPK gene: studies in human gametes and preimplantation embryos,” American Journal of Human Genetics, vol. 75, no. 2, pp. 325–329, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. V. Rakocevic-Stojanovic, D. Savić, S. Pavlović et al., “Intergenerational changes of CTG repeat depending on the sex of the transmitting parent in myotonic dystrophy type 1,” European Journal of Neurology, vol. 12, no. 3, pp. 236–237, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. M. F. Phillips and P. S. Harper, “Cardiac disease in myotonic dystrophy,” Cardiovascular Research, vol. 33, no. 1, pp. 13–22, 1997. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Melacini, C. Villanova, E. Menegazzo et al., “Correlation between cardiac involvement and CTG trinucleotide repeat length in myotonic dystrophy,” Journal of the American College of Cardiology, vol. 25, no. 1, pp. 239–245, 1995. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Brisson, M. Tremblay, C. Prévost, C. Laberge, J. Puymirat, and J. Mathieu, “Sibship stability of genotype and phenotype in myotonic dystrophy,” Clinical Genetics, vol. 62, no. 3, pp. 220–225, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Hunter, C. Tsilfidis, G. Mettler et al., “The correlation of age of onset with CTG trinucleotide repeat amplification in myotonic dystrophy,” Journal of Medical Genetics, vol. 29, no. 11, pp. 774–779, 1992. View at Scopus
  19. C. Marchini, R. Lonigro, L. Verriello, L. Pellizzari, P. Bergonzi, and G. Damante, “Correlations between individual clinical manifestations and CTG repeat amplification in myotonic dystrophy,” Clinical Genetics, vol. 57, no. 1, pp. 74–82, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Schoser and L. Timchenko, “Myotonic dystrophies 1 and 2: complex diseases with complex mechanisms,” Current Genomics, vol. 11, no. 2, pp. 77–90, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. L. P. W. Ranum and T. A. Cooper, “RNA-mediated neuromuscular disorders,” Annual Review of Neuroscience, vol. 29, pp. 259–277, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Cheng, J. M. Barceló, and R. G. Korneluk, “Characterization of large CTG repeat expansions in myotonic dystrophy alleles using PCR,” Human Mutation, vol. 7, no. 4, pp. 304–310, 1996. View at Publisher · View at Google Scholar
  23. M. Gennarelli, M. Pavoni, P. Amicucci, G. Novelli, and B. Dallapiccola, “A single polymerase chain reaction-based protocol for detecting normal and expanded alleles in myotonic dystrophy,” Diagnostic Molecular Pathology, vol. 7, no. 3, pp. 135–137, 1998. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Amicucci, M. Gennarelli, G. Novelli, and B. Dallapiccola, “Prenatal diagnosis of myotonic dystrophy using fetal DNA obtained from maternal plasma,” Clinical Chemistry, vol. 46, no. 2, pp. 301–302, 2000. View at Scopus
  25. J. P. Warner, L. H. Barron, D. Goudie et al., “A general method for the detection of large GAG repeat expansions by fluorescent PCR,” Journal of Medical Genetics, vol. 33, no. 12, pp. 1022–1026, 1996. View at Scopus
  26. M. Falk, M. Vojtísková, Z. Lukás, I. Kroupová, and U. Froster, “Simple procedure for automatic detection of unstable alleles in the myotonic dystrophy and Huntington's disease loci,” Genetic Testing, vol. 10, no. 2, pp. 85–97, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. N. L. Carson, “Analysis of repetitive regions in myotonic dystrophy type 1 and 2,” in Current Protocols in Human Genetics, chapter 9, 2009, unit 9. 6.
  28. G. Kakourou, S. Dhanjal, T. Mamas, P. Serhal, J. D. Delhanty, and S. B. Sengupta, “Modification of the triplet repeat primed polymerase chain reaction method for detection of the CTG repeat expansion in myotonic dystrophy type 1: application in preimplantation genetic diagnosis,” Fertility and Sterility, vol. 94, no. 5, pp. 1674–1679, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Catalli, A. Morgante, R. Iraci, F. Rinaldi, A. Botta, and G. Novelli, “Validation of sensitivity and specificity of tetraplet-primed PCR (TP-PCR) in the molecular diagnosis of myotonic dystrophy type 2 (DM2),” Journal of Molecular Diagnostics, vol. 12, no. 5, pp. 601–606, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Deka, P. P. Majumder, M. D. Shriver et al., “Distribution and evolution of CTG repeats at the myotonin protein kinase gene in human populations,” Genome Research, vol. 6, no. 2, pp. 142–154, 1996. View at Scopus