About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 958567, 8 pages
http://dx.doi.org/10.1155/2013/958567
Research Article

Anti-Inflammatory Activity of Bioaccessible Fraction from Eryngium foetidum Leaves

Institute of Nutrition, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand

Received 30 April 2013; Revised 29 July 2013; Accepted 1 August 2013

Academic Editor: Manish K. Chourasia

Copyright © 2013 Suwitcha Dawilai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Eckmann, H. C. Jung, C. Schürer-Maly, A. Panja, E. Morzycka-Wroblewska, and M. F. Kagnoff, “Differential cytokine expression by human intestinal epithelial cell lines: regulated expression of interleukin 8,” Gastroenterology, vol. 105, no. 6, pp. 1689–1697, 1993.
  2. K. Yamamoto, R. Kushima, O. Kisaki, Y. Fujiyama, and H. Okabe, “Combined effect of hydrogen peroxide induced oxidative stress and IL-1α on IL-8 production in CaCo-2 cells (a human colon carcinoma cell line) and normal intestinal epithelial cells,” Inflammation, vol. 27, no. 3, pp. 123–128, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. T. T. Macdonald and G. Monteleone, “Immunity, inflammation, and allergy in the gut,” Science, vol. 307, no. 5717, pp. 1920–1925, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Sonier, C. Patrick, P. Ajjikuttira, and F. W. Scoot, “Intestinal immune regulation as a potential diet-modifiable feature of gut inflammation and autoimmunity,” International Reviews of Immunology, vol. 28, no. 6, pp. 414–445, 2009.
  5. D. Wang, R. N. DuBois, and A. Richmond, “The role of chemokines in intestinal inflammation and cancer,” Current Opinion in Pharmacology, vol. 9, no. 6, pp. 688–696, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. R. P. MacDermott, “Chemokines in the inflammatory bowel diseases,” Journal of Clinical Immunology, vol. 19, no. 5, pp. 266–272, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Ina, K. Kusugami, T. Yamaguchi, et al., “Mucosal interleukin8 is involved in neutrophil migration and binding to extracellular matrix in inflammatory bowel disease,” The American Journal of Gastroenterology, vol. 92, no. 8, pp. 1342–1346, 1997.
  8. C. Banks, A. Bateman, R. Payne, P. Johnson, and N. Sheron, “Chemokine expression in IBD. Mucosal chemokine expression is unselectively increased in both ulcerative colitis and Crohn's disease,” The Journal of Pathology, vol. 199, no. 1, pp. 28–35, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. H. C. Reinecker, E. Y. Loh, D. J. Ringler, A. Mehta, J. L. Rombeau, and R. P. MacDermott, “Monocyte-chemoattractant protein 1 gene expression in intestinal epithelial cells and inflammatory bowel disease mucosa,” Gastroenterology, vol. 108, no. 1, pp. 40–50, 1995. View at Publisher · View at Google Scholar · View at Scopus
  10. H. C. Reinecker and D. K. Podolsky, “Human intestinal epithelial cells express functional cytokine receptors sharing the common γ c chain of the interleukin 2 receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 18, pp. 8353–8357, 1995. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Mazzucchelli, C. Hauser, K. Zgraggen, et al., “Differential in situ expression of the genes encoding the chemokines MCP-1 and rantes in human inflammatory bowel disease,” The Journal of Pathology, vol. 178, no. 2, pp. 201–206, 1996.
  12. A. Yadav, V. Saini, and S. Arora, “MCP-1: chemoattractant with a role beyond immunity: a review,” Clinica Chimica Acta, vol. 411, no. 21-22, pp. 1570–1579, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Zhu and Y. Li, “Oxidative stress and redox signaling mechanisms of inflammatory bowel disease: updated experimental and clinical evidence,” Experimental Biology and Medicine, vol. 237, no. 5, pp. 474–480, 2012.
  14. P. Rutgeerts, B. G. Feagan, G. R. Lichtenstein et al., “Comparison of scheduled and episodic treatment strategies of infliximab in Crohn's disease,” Gastroenterology, vol. 126, no. 2, pp. 402–413, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. B. E. Sands, F. H. Anderson, C. N. Bernstein et al., “Infliximab maintenance therapy for fistulizing Crohn's disease,” The New England Journal of Medicine, vol. 350, no. 9, pp. 876–885, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. S. B. Hanauer and F. Baert, “Medical therapy of inflammatory bowel disease,” Medical Clinics of North America, vol. 78, no. 6, pp. 1413–1426, 1994. View at Scopus
  17. A. Stallmach, S. Hagel, and T. Bruns, “Adverse effects of biologics used for treating IBD,” Best Practice & Research Clinical Gastroenterology, vol. 24, no. 2, pp. 167–182, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. J. González-Gallego, M. V. García-Mediavilla, S. Sánchez-Campos, and M. J. Tuñó, “Fruit polyphenols, immunity and inflammation,” The British Journal of Nutrition, vol. 104, supplement 3, pp. S15–S27, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Biasi, M. Astegiano, M. Maina, G. Leonarduzzi, and G. Poli, “Polyphenol supplementation as a complementary medicinal approach to treating inflammatory bowel disease,” Current Medicinal Chemistry, vol. 18, no. 31, pp. 4851–4865, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Duke, Duke's Handbook of Medicinal Plants of Latin America, CRC Press, Taylor and Francis, Boca Raton, FL, USA, 2009.
  21. R. Chhetri, “Trends in ethnodomestication of some wild plants in Meghalaya, Northeast India,” Indian Journal of Traditional Knowledge, vol. 5, no. 3, pp. 342–347, 2006.
  22. P. R. C. Prasad, C. S. Reddy, S. H. Raza, and C. B. S. Dutt, “Folklore medicinal plants of North Andaman Islands, India,” Fitoterapia, vol. 79, no. 6, pp. 458–464, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. The National Bureau of Agricultural Commodity and Food Standards, Ministry of Agriculture and Cooperatives, Thailand, “The amount of food consumption at 95 percentile per capita and eater only,” in Food Consumption Data of Thailand, p. 173, The Agricultural Co-Operative Federation of Thailand, Bangkok, Thailand, 2006.
  24. V. Lo, N. An, and N. Toanh, “Study of essential oil of Eryngium foetidum L.,” Tap Chi Duoc, vol. 6, pp. 19–20, 1991.
  25. J. H. A. Paul, C. E. Seaforth, and T. Tikasingh, “Eryngium foetidum L.: a review,” Fitoterapia, vol. 82, no. 3, pp. 302–308, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Mekhora, C. Muangnoi, P. Chingsuwanrote, et al., “Eryngium foetidum suppresses inflammatory mediators produced by macrophages,” Asian Pacific Journal of Cancer Prevention, vol. 13, no. 2, pp. 653–664, 2012.
  27. M. D. Garcia, M. T. Saenz, M. A. Gomez, and M. A. Fernandez, “Topical antiinflammatory activity of phytosterols isolated from Eryngium foetidum on chronic and acute inflammation models,” Phytotherapy Research, vol. 13, no. 1, pp. 78–80, 1999.
  28. M. Saenz, M. Fernandez, and M. Garcia, “Antiinflammatory and analgesic properties from leaves of Eryngium foetidum L., (Apiaceae),” Phytotherapy Research, vol. 11, pp. 380–383, 1997.
  29. M. Shimizu, “Interaction between food substances and the intestinal epithelium,” Bioscience, Biotechnology and Biochemistry, vol. 74, no. 2, pp. 232–241, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. D. A. Garrett, M. L. Failla, and R. J. Sarama, “Development of an in vitro digestion method to assess carotenoid bioavailability from meals,” Journal of Agricultural and Food Chemistry, vol. 47, no. 10, pp. 4301–4309, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. M. G. Ferruzzi, J. L. Lumpkin, S. J. Schwartz, and M. Failla, “Digestive stability, micellarization, and uptake of β-carotene isomers by Caco-2 human intestinal cells,” Journal of Agricultural and Food Chemistry, vol. 54, no. 7, pp. 2780–2785, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. A. I. Olives Barba, M. Cámara Hurtado, M. C. Sánchez Mata, V. Fernández Ruiz, and M. López Sáenz de Tejada, “Application of a UV-vis detection-HPLC method for a rapid determination of lycopene and β-carotene in vegetables,” Food Chemistry, vol. 95, no. 2, pp. 328–336, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Tuntipopipat, C. Muangnoi, P. Chingsuwanrote et al., “Anti-inflammatory activities of red curry paste extract on lipopolysaccharide-activated murine macrophage cell line,” Nutrition, vol. 27, no. 4, pp. 479–487, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. H. M. Merken and G. R. Beecher, “Liquid chromatographic method for the separation and quantification of prominent flavonoid aglycones,” Journal of Chromatography A, vol. 897, no. 1-2, pp. 177–184, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. V. Vichai and K. Kirtikara, “Sulforhodamine B colorimetric assay for cytotoxicity screening,” Nature Protocols, vol. 1, no. 3, pp. 1112–1116, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. Kim, J. H. Seo, and H. Kim, “β-carotene and lutein inhibit hydrogen peroxide-induced activation of NF-κB and IL-8 expression in gastric epithelial AGS cells,” Journal of Nutritional Science and Vitaminology, vol. 57, no. 3, pp. 216–223, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Lavy, Y. Naveh, R. Coleman, S. Mokady, and M. J. Werman, “Dietary dunaliella bardawil, a β-carotene-rich alga, protects against acetic acid-induced small bowel inflammation in rats,” Inflammatory Bowel Diseases, vol. 9, no. 6, pp. 372–379, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Hernández-Ortega, A. Ortiz-Moreno, M. D. Hernández-Navarro, et al., “Antioxidant, antinociceptive, and anti-inflammatory effects of carotenoids extracted from dried pepper (Capsicum annuum L.),” Journal of Biomedicine and Biotechnology, vol. 2012, Article ID 524019, 10 pages, 2012. View at Publisher · View at Google Scholar
  39. Z. Zhao, H. S. Shin, H. Satsu, M. Totsuka, and M. Shimizu, “5-caffeoylquinic acid and caffeic acid down-regulate the oxidative stress- and TNF-α-induced secretion of interleukin-8 from Caco-2 cells,” Journal of Agricultural and Food Chemistry, vol. 56, no. 10, pp. 3863–3868, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. Z. Ye, Z. Liu, A. Henderson et al., “Increased CYP4B1 mRNA is associated with the inhibition of dextran sulfate sodium-induced colitis by caffeic acid in mice,” Experimental Biology and Medicine, vol. 234, no. 6, pp. 606–616, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Wall, R. Lim, M. Poljak, et al., “Dietary flavonoids as therapeutics for preterm birth: luteolin and kaempferol suppress inflammation in human gestational tissues in vitro,” Oxidative Medicine and Cellular Longevity, vol. 2013, Article ID 485201, 10 pages, 2013. View at Publisher · View at Google Scholar
  42. M. Hämäläinen, R. Nieminen, P. Vuorela, M. Heinonen, and E. Moilanen, “Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-κB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-κB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages,” Mediators of Inflammation, vol. 2007, Article ID 45673, 10 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Y. Park, G. E. Ji, and M. K. Sung, “Dietary kaempferol suppresses inflammation of dextran sulfate sodium-induced colitis in mice,” Digestive Diseases and Sciences, vol. 57, no. 2, pp. 355–363, 2012. View at Publisher · View at Google Scholar · View at Scopus
  44. Y. Sato, S. Itagaki, T. Kurokawa et al., “In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid,” International Journal of Pharmaceutics, vol. 403, no. 1-2, pp. 136–138, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. P.-C. Chao, C.-C. Hsu, and M.-C. Yin, “Anti-inflammatory and anti-coagulatory activities of caffeic acid and ellagic acid in cardiac tissue of diabetic mice,” Nutrition & Metabolism, vol. 6, article 33, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. P. Nirmala and M. Ramanathan, “Effect of kaempferol on lipid peroxidation and antioxidant status in 1,2-dimethyl hydrazine induced colorectal carcinoma in rats,” European Journal of Pharmacology, vol. 654, no. 1, pp. 75–79, 2011. View at Publisher · View at Google Scholar · View at Scopus