About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 962376, 12 pages
http://dx.doi.org/10.1155/2013/962376
Research Article

A Versatile Star PEG Grafting Method for the Generation of Nonfouling and Nonthrombogenic Surfaces

1Laboratory of Endovascular Biomaterials (LBeV), Research Centre, Centre Hospitalier de l’Université de Montreal (CRCHUM), 2099 Alexandre de Sève, Montreal, QC, Canada H2L 2W5
2Department of Mechanical Engineering, École de Technologie Supérieure (ÉTS), 1100 Boulevard Notre-Dame Ouest, Montreal, QC, Canada H3C 1K3
3Department of Engineering Physics, École Polytechnique de Montreal, P.O. Box 6079, Succ. Centre-Ville, Montreal, QC, Canada H3C 3A7
4Laboratory of Thrombosis and Haemostasis Research Centre, Montreal Heart Institute, 5000 Belanger Street, Montreal, QC, Canada H1T 1C8
5Department of Chemical Engineering, École Polytechnique de Montreal, P.O. Box 6079, Succ. Centre-Ville, Montreal, QC, Canada H3C 3A7

Received 25 August 2012; Accepted 16 November 2012

Academic Editor: Fabienne Poncin-Epaillard

Copyright © 2013 Pradeep Kumar Thalla et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. D. Ratner, “Blood compatibility—a perspective,” Journal of Biomaterials Science, Polymer Edition, vol. 11, no. 11, pp. 1107–1119, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. S. I. Jeon and J. D. Andrade, “Protein-surface interactions in the presence of polyethylene oxide. II. Effect of protein size,” Journal of Colloid And Interface Science, vol. 142, no. 1, pp. 159–166, 1991. View at Scopus
  3. F. Fuertges and A. Abuchowski, “The clinical efficacy of poly(ethylene glycol)-modified proteins,” Journal of Controlled Release, vol. 11, no. 1–3, pp. 139–148, 1990. View at Scopus
  4. J. M. Harris, Poly(Ethylene Glycol) Chemistry, Biotechnical and Biomedical Applications, Plenum Press, New York, NY, USA, 1992.
  5. X. Zhao and J. Mllton Harris, “Novel degradable polyethylene glycol hydrogels for controlled release of protein,” Journal of Pharmaceutical Sciences, vol. 87, no. 11, pp. 1450–1458, 1998. View at Scopus
  6. M. Zhang, T. Desai, and M. Ferrari, “Proteins and cells on PEG immobilized silicon surfaces,” Biomaterials, vol. 19, no. 10, pp. 953–960, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Groll and M. Moeller, “Star polymer surface passivation for single-molecule detection,” Methods in Enzymology, vol. 472, pp. 1–18, 2010. View at Scopus
  8. S. S. Davis and L. Illum, “Polymeric microspheres as drug carriers,” Biomaterials, vol. 9, no. 1, pp. 111–115, 1988. View at Scopus
  9. N. B. Graham and M. E. McNeil, “Hydrogels for controlled drug delivery,” Biomaterials, vol. 5, no. 1, pp. 27–36, 1984. View at Publisher · View at Google Scholar · View at Scopus
  10. Z. Yang, J. A. Galloway, and H. Yu, “Protein interactions with poly(ethylene glycol) self-assembled monolayers on glass substrates: diffusion and adsorption,” Langmuir, vol. 15, no. 24, pp. 8405–8411, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. H. S. Shin, K. Park, Ji Heung Kim et al., “Biocompatible peg grafting on dlc-coated nitinol alloy for vascular stents,” Journal of Bioactive and Compatible Polymers, vol. 24, no. 4, pp. 316–328, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Cao, S. Sukavaneshvar, B. D. Ratner, and T. A. Horbett, “Glow discharge plasma treatment of polyethylene tubing with tetraglyme results in ultralow fibrinogen adsorption and greatly reduced platelet adhesion,” Journal of Biomedical Materials Research, vol. 79, no. 4, pp. 788–803, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. W. R. Gombotz, W. Guanghui, T. A. Horbett, and A. S. Hoffman, “Protein adsorption to poly(ethylene oxide) surfaces,” Journal of Biomedical Materials Research, vol. 25, no. 12, pp. 1547–1562, 1991. View at Scopus
  14. S. Demming, C. Lesche, H. Schmolke, C. P. Klages, and S. Büttgenbach, “Characterization of long-term stability of hydrophilized PEG-grafted PDMS within different media for biotechnological and pharmaceutical applications,” Physica Status Solidi (A), vol. 208, no. 6, pp. 1301–1307, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. K. L. Prime and G. M. Whitesides, “Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide): a model system using self-assembled monolayers,” Journal of the American Chemical Society, vol. 115, no. 23, pp. 10714–10721, 1993. View at Scopus
  16. S. J. Sofia and E. W. Merrill, “Protein adsorption on poly(ethylene oxide)-grafted silicon surfaces,” ACS Symposium Series, vol. 680, pp. 342–360, 1997. View at Scopus
  17. P. R. Kuhl and L. G. Griffith-Cima, “Tethered epidermal growth factor as a paradigm for growth factor-induced stimulation from the solid phase,” Nature Medicine, vol. 2, no. 9, pp. 1022–1027, 1996. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Truica-Marasescu, P. L. Girard-Lauriault, A. Lippitz, W. E. S. Unger, and M. R. Wertheimer, “Nitrogen-rich plasma polymers: comparison of films deposited in atmospheric- and low-pressure plasmas,” Thin Solid Films, vol. 516, no. 21, pp. 7406–7417, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Lerouge, A. Major, P. L. Girault-Lauriault et al., “Nitrogen-rich coatings for promoting healing around stent-grafts after endovascular aneurysm repair,” Biomaterials, vol. 28, no. 6, pp. 1209–1217, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. J. C. Ruiz, A. St-Georges-Robillard, C. Thérésy, S. Lerouge, and M. R. Wertheimer, “Fabrication and characterisation of amine-rich organic thin films: focus on stability,” Plasma Processes and Polymers, vol. 7, no. 9-10, pp. 737–753, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Nakajima and Y. Ikada, “Mechanism of amide formation by carbodiimide for bioconjugation in aqueous media,” Bioconjugate Chemistry, vol. 6, no. 1, pp. 123–130, 1995. View at Scopus
  22. D. J. Irvine, A. M. Mayes, and L. Griffith-Cima, “Self-consistent field analysis of grafted star polymers,” Macromolecules, vol. 29, no. 18, pp. 6037–6043, 1996. View at Scopus
  23. F. F. Hook, J. Vörös, M. Rodahl et al., “A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation,” Colloids and Surfaces B, vol. 24, no. 2, pp. 155–170, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. F. Höök, M. Rodahl, P. Brzezinski, and B. Kasemo, “Energy dissipation kinetics for protein and antibody-antigen adsorption under shear oscillation on a quartz crystal microbalance,” Langmuir, vol. 14, no. 4, pp. 729–734, 1998. View at Scopus
  25. N. Weber, A. Pesnell, D. Bolikal, J. Zeltinger, and J. Kohn, “Viscoelastic properties of fibrinogen adsorbed to the surface of biomaterials used in blood-contacting medical devices,” Langmuir, vol. 23, no. 6, pp. 3298–3304, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Rodahl, F. Höök, C. Fredriksson et al., “Simultaneous frequency and dissipation factor QCM measurements of biomolecular adsorption and cell adhesion,” Faraday Discussions, vol. 107, pp. 229–246, 1997. View at Scopus
  27. S. Sharma, R. W. Johnson, and T. A. Desai, “Evaluation of the stability of nonfouling ultrathin poly(ethylene glycol) films for silicon-based microdevices,” Langmuir, vol. 20, no. 2, pp. 348–356, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. J. L. Diener, H. A. Daniel Lagassé, D. Duerschmied et al., “Inhibition of von Willebrand factor-mediated platelet activation and thrombosis by the anti-von Willebrand factor A1-domain aptamer ARC1779,” Journal of Thrombosis and Haemostasis, vol. 7, no. 7, pp. 1155–1162, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Merhi, M. King, and R. Guidoin, “Acute thrombogenicity of intact and injured natural blood conduits versus synthetic conduits: neutrophil, platelet, and fibrin(ogen) adsorption under various shear-rate conditions,” Journal of Biomedical Materials Research Part A, vol. 34, no. 4, pp. 477–485, 1997.
  30. C. D. Wagner, Handbook of X-Ray and Ultraviolet Photoelectron Spectroscopy, Edited by G. E. Muilenberg, Perkin-Elmer Corporation(Physical Electronics), 1st edition, 1979.
  31. K. Park, F. W. Mao, and H. Park, “Morphological characterization of surface-induced platelet activation,” Biomaterials, vol. 11, no. 1, pp. 24–31, 1990. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Satulovsky, M. A. Carignano, and I. Szleifer, “Kinetic and thermodynamic control of protein adsorption,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 16, pp. 9037–9041, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. H. Zhao, B. K. Zhu, L. Kong, and Y. Y. Xu, “Improving hydrophilicity and protein resistance of poly(vinylidene fluoride) membranes by blending with amphiphilic hyperbranched-star polymer,” Langmuir, vol. 23, no. 10, pp. 5779–5786, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. N. Weber, H. P. Wendel, and J. Kohn, “Formation of viscoelastic protein layers on polymeric surfaces relevant to platelet adhesion,” Journal of Biomedical Materials Research, vol. 72, no. 4, pp. 420–427, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Huang, J. Xie, X. Liu, L. Yuan, S. Wang, S. Guo, et al., “Conformational changes of protein adsorbed on tailored flat substrates with different chemistries,” ChemPhysChem, vol. 12, no. 18, pp. 3642–3646, 2011. View at Publisher · View at Google Scholar
  36. B. Zhu, T. Eurell, R. Gunawan, and D. Leckband, “Chain-length dependence of the protein and cell resistance of oligo(ethylene glycol)-terminated self-assembled monolayers on gold,” Journal of Biomedical Materials Research, vol. 56, no. 3, pp. 406–416, 2001.
  37. L. D. Unsworth, H. Sheardown, and J. L. Brash, “Protein resistance of surfaces prepared by sorption of end-thiolated poly(ethylene glycol) to gold: effect of surface chain density,” Langmuir, vol. 21, no. 3, pp. 1036–1041, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. H. Chen, Z. Zhang, Y. Chen, M. A. Brook, and H. Sheardown, “Protein repellant silicone surfaces by covalent immobilization of poly(ethylene oxide),” Biomaterials, vol. 26, no. 15, pp. 2391–2399, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. G. Zhou, C. Ma, and G. Zhang, “Synthesis of polyurethane-g-poly(ethylene glycol) copolymers by macroiniferter and their protein resistance,” Polymer Chemistry, vol. 2, no. 6, pp. 1409–1414, 2011. View at Publisher · View at Google Scholar
  40. S. Dimitrievska, M. Maire, G. A. Diaz-Quijada et al., “Low Thrombogenicity coating of nonwoven PET fiber structures for vascular grafts,” Macromolecular Bioscience, vol. 11, no. 4, pp. 493–502, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. J. A. Hubbell, “Chapter 11 Pharmacologic modification of materials,” Cardiovascular Pathology, vol. 2, supplement 3, pp. 121–127, 1993. View at Scopus
  42. S. Li and J. J. D. Henry, “Nonthrombogenic approaches to cardiovascular bioengineering,” Annual Review of Biomedical Engineering, vol. 13, no. 1, pp. 451–475, 2011. View at Publisher · View at Google Scholar
  43. M. B. Gorbet and M. V. Sefton, “Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes,” Biomaterials, vol. 25, no. 26, pp. 5681–5703, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. M. L. W. Knetsch and L. H. Koole, “VEGF-E enhances endothelialization and inhibits thrombus formation on polymeric surfaces,” Journal of Biomedical Materials Research, vol. 93, no. 1, pp. 77–85, 2010. View at Publisher · View at Google Scholar · View at Scopus