About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 964743, 11 pages
http://dx.doi.org/10.1155/2013/964743
Review Article

Nonsmall Cell Lung Cancer Therapy: Insight into Multitargeted Small-Molecule Growth Factor Receptor Inhibitors

1Molecular Biology Research Center, School of Life Science and State Key Laboratory of Medical Genetics of China, Central South University, Changsha, Hunan 410078, China
2Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China

Received 14 April 2013; Accepted 13 June 2013

Academic Editor: Beric Henderson

Copyright © 2013 Mridul Roy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. American Cancer Society, “Cancer facts and figures 2013,” American Cancer Society, Atlanta, Ga, USA, 2013, http://www.cancer.org/acs/groups/content/@epidemiologysurveilance/documents/document/acspc-036845.pdf.
  2. American Cancer Society, “Non-small cell lung cancer,” 2013, http://www.cancer.org/cancer/lungcancer-non-smallcell/index.
  3. D. S. Ettinger, W. Akerley, H. Borghaei, et al., “Non-small cell lung cancer,” Journal of the National Comprehensive Cancer Network, vol. 10, no. 10, pp. 1236–1271, 2012.
  4. F. Fossella, J. R. Pereira, J. von Pawel et al., “Randomized, multinational, phase III study of docetaxel plus platinum combinations versus vinorelbine plus cisplatin for advanced non-small-cell lung cancer: the TAX 326 Study Group,” Journal of Clinical Oncology, vol. 21, no. 16, pp. 3016–3024, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. G. V. Scagliotti, P. Parikh, J. von Pawel et al., “Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer,” Journal of Clinical Oncology, vol. 26, no. 21, pp. 3543–3551, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. D. N. Carney, “Lung cancer—time to move on from chemotherapy,” New England Journal of Medicine, vol. 346, no. 2, pp. 126–128, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. C. von Plessen, B. Bergman, O. Andresen et al., “Palliative chemotherapy beyond three courses conveys no survival or consistent quality-of-life benefits in advanced non-small-cell lung cancer,” British Journal of Cancer, vol. 95, no. 8, pp. 966–973, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. O. P. Joon, S. W. Kim, S. A. Jin et al., “Phase III trial of two versus four additional cycles in patients who are nonprogressive after two cycles of platinum-based chemotherapy in non-small-cell lung cancer,” Journal of Clinical Oncology, vol. 25, no. 33, pp. 5233–5239, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Jemal, M. M. Center, C. DeSantis, and E. M. Ward, “Global patterns of cancer incidence and mortality rates and trends,” Cancer Epidemiology Biomarkers and Prevention, vol. 19, no. 8, pp. 1893–1907, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Hanahan and R. A. Weinberg, “The hallmarks of cancer,” Cell, vol. 100, no. 1, pp. 57–70, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Fukuoka, S. Yano, G. Giaccone et al., “Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial) [corrected],” Journal of Clinical Oncology, vol. 21, no. 12, pp. 2237–2246, 2003.
  12. L. Toschi and F. Cappuzzo, “Understanding the new genetics of responsiveness to epidermal growth factor receptor tyrosine kinase inhibitors,” Oncologist, vol. 12, no. 2, pp. 211–220, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. N. A. Pennell and T. J. Lynch Jr., “Combined inhibition of the VEGFR and EGFR signaling pathways in the treatment of NSCLC,” Oncologist, vol. 14, no. 4, pp. 399–411, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Fontanini, S. Vignati, L. Boldrini et al., “Vascular endothelial growth factor is associated with neovascularization and influences progression of non-small cell lung carcinoma,” Clinical Cancer Research, vol. 3, no. 6, pp. 861–865, 1997. View at Scopus
  15. Y. Wang, L. Huang, Y. Yang, L. Xu, J. Yang, and Y. Wu, “Effects of autocrine vascular endothelial growth factor (VEGF) in non-small cell lung cancer cell line A549,” Molecular Biology Reports, vol. 40, no. 4, pp. 3093–3099, 2013.
  16. A. Charpidou, I. Gkiozos, M. Konstantinou et al., “Bronchial washing levels of vascular endothelial growth factor receptor-2 (VEGFR2) correlate with overall survival in NSCLC patients,” Cancer Letters, vol. 304, no. 2, pp. 144–153, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Ferrara, H. P. Gerber, and J. LeCouter, “The biology of VEGF and its receptors,” Nature Medicine, vol. 9, no. 6, pp. 669–676, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Levitzki, “PDGF receptor kinase inhibitors for the treatment of PDGF driven diseases,” Cytokine and Growth Factor Reviews, vol. 15, no. 4, pp. 229–235, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Reinmuth, R. Liersch, M. Raedel et al., “Combined anti-PDGFRalpha and PDGFRbeta targeting in non-small cell lung cancer,” International Journal of Cancer, vol. 124, no. 7, pp. 1535–1544, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Donnem, S. Al-Saad, K. Al-Shibli, L. T. Busund, and R. M. Bremnes, “Co-expression of PDGF-B and VEGFR-3 strongly correlates with lymph node metastasis and poor survival in non-small-cell lung cancer,” Annals of Oncology, vol. 21, no. 2, pp. 223–231, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Beenken and M. Mohammadi, “The FGF family: biology, pathophysiology and therapy,” Nature Reviews Drug Discovery, vol. 8, no. 3, pp. 235–253, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. J. M. Knowlden, H. E. Jones, D. Barrow, J. M. W. Gee, R. I. Nicholson, and I. R. Hutcheson, “Insulin receptor substrate-1 involvement in epidermal growth factor receptor and insulin-like growth factor receptor signalling: implication for Gefitinib (‘Iressa’) response and resistance,” Breast Cancer Research and Treatment, vol. 111, no. 1, pp. 79–91, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. T. J. Semrad and P. C. Mack, “Fibroblast growth factor signaling in nonsmall-cell lung cancer,” Clinical Lung Cancer, vol. 13, no. 2, pp. 90–95, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Nakagawa, H. Uramoto, S. Oka et al., “Clinical significance of IGF1R expression in nonsmall-cell lung cancer,” Clinical Lung Cancer, vol. 13, no. 2, pp. 136–142, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Desbois-Mouthon, A. Baron, M. J. Blivet-Van Eggelpoël et al., “Insulin-like growth factor-1 receptor inhibition induces a resistance mechanism via the epidermal growth factor receptor/HER3/AKT signaling pathway: rational basis for cotargeting insulin-like growth factor-1 receptor and epidermal growth factor receptor in hepatocellular carcinoma,” Clinical Cancer Research, vol. 15, no. 17, pp. 5445–5456, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Ariga, T. Nedachi, M. Akahori et al., “Signalling pathways of insulin-like growth factor-I that are augmented by cAMP in FRTL-5 cells,” Biochemical Journal, vol. 348, no. 2, pp. 409–416, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. D. M. Nguyen and D. S. Schrump, “Growth factor receptors as targets for lung cancer therapy,” Seminars in Thoracic and Cardiovascular Surgery, vol. 16, no. 1, pp. 3–12, 2004. View at Scopus
  28. K. Imai and A. Takaoka, “Comparing antibody and small-molecule therapies for cancer,” Nature Reviews Cancer, vol. 6, no. 9, pp. 714–727, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Reck, F. Barlesi, L. Crinò et al., “Predicting and managing the risk of pulmonary haemorrhage in patients with NSCLC treated with bevacizumab: a consensus report from a panel of experts,” Annals of Oncology, vol. 23, no. 5, pp. 1111–1120, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. P. J. Hudson and C. Souriau, “Engineered antibodies,” Nature Medicine, vol. 9, no. 1, pp. 129–134, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Gorter and S. Meri, “Immune evasion of tumor cells using membrane-bound complement regulatory proteins,” Immunology Today, vol. 20, no. 12, pp. 576–582, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Zhang, P. L. Yang, and N. S. Gray, “Targeting cancer with small molecule kinase inhibitors,” Nature Reviews Cancer, vol. 9, no. 1, pp. 28–39, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. L. N. Johnson, “Protein kinase inhibitors: contributions from structure to clinical compounds,” Quarterly Reviews of Biophysics, vol. 42, no. 1, pp. 1–40, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Liu and N. S. Gray, “Rational design of inhibitors that bind to inactive kinase conformations,” Nature Chemical Biology, vol. 2, no. 7, pp. 358–364, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. P. T. C. Wan, M. J. Garnett, S. M. Roe et al., “Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF,” Cell, vol. 116, no. 6, pp. 855–867, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. E. L. Kwak, R. Sordella, D. W. Bell et al., “Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 21, pp. 7665–7670, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Wissner, H. L. Fraser, C. L. Ingalls et al., “Dual irreversible kinase inhibitors: quinazoline-based inhibitors incorporating two independent reactive centers with each targeting different cysteine residues in the kinase domains of EGFR and VEGFR-2,” Bioorganic and Medicinal Chemistry, vol. 15, no. 11, pp. 3635–3648, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. J. E. Dancey, “Agents targeting Ras signaling pathway,” Current Pharmaceutical Design, vol. 8, no. 25, pp. 2259–2267, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. J. H. Schiller, J. Lee, N. Hanna, A. Traynor, and D. Carbone D, “A randomized discontinuation phase II study of sorafenib versus placebo in patients with non-small cell lung cancer who have failed at least two prior chemotherapy regimens,” Journal of Clinical Oncology, vol. 26, supplement 15, article 427S, 2008.
  40. G. Scagliotti, S. Novello, J. von Pawel et al., “Phase III study of carboplatin and paclitaxel alone or with sorafenib in advanced non-small-cell lung cancer,” Journal of Clinical Oncology, vol. 28, no. 11, pp. 1835–1842, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Wang, L. Wang, Y. Liu et al., “Randomize trial of cisplatin plus gemcitabine with either sorafenib or placebo as first-line therapy for non-small cell lung cancer,” Chinese Journal of Lung Cancer, vol. 14, no. 3, pp. 239–244, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. L. G. Paz-Ares, B. Biesma, D. Heigener, et al., “Phase III, randomized, double-blind, placebo-controlled trial of gemcitabine/cisplatin alone or with sorafenib for the first-line treatment of advanced, nonsquamous non-small-cell lung cancer,” Journal of Clinical Oncology, vol. 30, no. 25, pp. 3084–3092, 2012.
  43. J. S. W. Lind, A. M. C. Dingemans, H. J. M. Groen et al., “A multicenter phase II study of erlotinib and sorafenib in chemotherapy-naïve patients with advanced non-small cell lung cancer,” Clinical Cancer Research, vol. 16, no. 11, pp. 3078–3087, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. C. Gridelli, F. Morgillo, A. Favaretto et al., “Sorafenib in combination with erlotinib or with gemcitabine in elderly patients with advanced non-small-cell lung cancer: a randomized phase II study,” Annals of Oncology, vol. 22, no. 7, pp. 1528–1534, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. D. R. Spigel, H. A. Burris III, F. A. Greco et al., “Randomized, double-blind, placebo-controlled, phase II trial of sorafenib and erlotinib or erlotinib alone in previously treated advanced non-small-cell lung cancer,” Journal of Clinical Oncology, vol. 29, no. 18, pp. 2582–2589, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Adjei, G. Blumenschein Jr., S. Mandrekar, S. Hillman, U. Gatzemeier, and D. Heigener, “Long-term safety and tolerability of sorafenib in patients with advanced non-small-cell lung cancer: a case-based review,” Clinical Lung Cancer, vol. 12, no. 4, pp. 212–217, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. D. B. Mendel, A. Douglas Laird, X. Xin et al., “In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship,” Clinical Cancer Research, vol. 9, no. 1, pp. 327–337, 2003. View at Scopus
  48. S. Novello, G. V. Scagliotti, R. Rosell et al., “Phase II study of continuous daily sunitinib dosing in patients with previously treated advanced non-small cell lung cancer,” British Journal of Cancer, vol. 101, no. 9, pp. 1543–1548, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Novello, C. Camps, F. Grossi et al., “Phase II study of sunitinib in patients with non-small cell lung cancer and irradiated brain metastases,” Journal of Thoracic Oncology, vol. 6, no. 7, pp. 1260–1266, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. G. V. Scagliotti, I. Vynnychenko, K. Park, et al., “International, randomized, placebo-controlled, double-blind phase III study of motesanib plus carboplatin/paclitaxel in patients with advanced nonsquamous non-small-cell lung cancer: MONET1,” Journal of Clinical Oncology, vol. 30, no. 23, pp. 2829–2836, 2012.
  51. M. A. Socinski, F. A. Scappaticci, M. Samant, M. M. Kolb, and M. F. Kozloff, “Safety and efficacy of combining sunitinib with bevacizumab + paclitaxel/carboplatin in non-small cell lung cancer,” Journal of Thoracic Oncology, vol. 5, no. 3, pp. 354–360, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. G. R. Blumenschein Jr., T. Ciuleanu, F. Robert, et al., “Sunitinib plus erlotinib for the treatment of advanced/metastatic non-small-cell lung cancer: a lead-in study,” Journal of Thoracic Oncology, vol. 7, no. 9, pp. 1406–1416, 2012.
  53. P. Nikolinakos and J. V. Heymach, “The tyrosine kinase inhibitor cediranib for non-small cell lung cancer and other thoracic malignancies,” Journal of Thoracic Oncology, vol. 3, no. 6, pp. S131–S134, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. N. Yamamoto, T. Tamura, N. Yamamoto et al., “Phase I, dose escalation and pharmacokinetic study of cediranib (RECENTIN), a highly potent and selective VEGFR signaling inhibitor, in Japanese patients with advanced solid tumors,” Cancer Chemotherapy and Pharmacology, vol. 64, no. 6, supplement 2, pp. 1165–1172, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. G. Goss, F. A. Shepherd, S. Laurie et al., “A phase I and pharmacokinetic study of daily oral cediranib, an inhibitor of vascular endothelial growth factor tyrosine kinases, in combination with cisplatin and gemcitabine in patients with advanced non-small cell lung cancer: a study of the National Cancer Institute of Canada Clinical Trials Group,” European Journal of Cancer, vol. 45, no. 5, pp. 782–788, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. G. D. Goss, A. Arnold, F. A. Shepherd et al., “Randomized, double-blind trial of carboplatin and paclitaxel with either daily oral cediranib or placebo in advanced non-small-cell lung cancer: NCIC clinical trials group BR24 study,” Journal of Clinical Oncology, vol. 28, no. 1, pp. 49–55, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. G. K. Dy, S. J. Mandrekar, G. D. Nelson, et al., “A randomized phase II study of gemcitabine and carboplatin with or without cediranib as first-line therapy in advanced non-small-cell lung cancer: North Central Cancer Treatment Group Study N0528,” Journal of Thoracic Oncology, vol. 8, no. 1, pp. 79–88, 2013.
  58. D. H. Albert, P. Tapang, T. J. Magoc et al., “Preclinical activity of ABT-869, a multitargeted receptor tyrosine kinase inhibitor,” Molecular Cancer Therapeutics, vol. 5, no. 4, pp. 995–1006, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. H. Asahina, Y. Tamura, H. Nokihara et al., “An open-label, phase 1 study evaluating safety, tolerability, and pharmacokinetics of linifanib (ABT-869) in Japanese patients with solid tumors,” Cancer Chemotherapy and Pharmacology, vol. 69, no. 6, pp. 1477–1486, 2012. View at Publisher · View at Google Scholar · View at Scopus
  60. E. H. Tan, G. D. Goss, R. Salgia et al., “Phase 2 trial of linifanib (ABT-869) in patients with advanced non-small cell lung cancer,” Journal of Thoracic Oncology, vol. 6, no. 8, pp. 1418–1425, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. T. K. Choueiri, “Axitinib, a novel anti-angiogenic drug with promising activity in various solid tumors,” Current Opinion in Investigational Drugs, vol. 9, no. 6, pp. 658–671, 2008. View at Scopus
  62. F. Wang, Y. J. Mi, S. G. Chen, et al., “Axitinib targeted cancer stemlike cells to enhance efficacy of chemotherapeutic drugs via inhibiting the drug transport function of ABCG2,” Molecular Medicine, vol. 18, pp. 887–898, 2012.
  63. M. F. Kozloff, L. P. Martin, M. Krzakowski, et al., “Phase I trial of axitinib combined with platinum doublets in patients with advanced non-small cell lung cancer and other solid tumours,” British Journal of Cancer, vol. 107, no. 8, pp. 1277–1285, 2012.
  64. K. P. S. Raghav and G. R. Blumenschein, “Motesanib and advanced NSCLC: experiences and expectations,” Expert Opinion on Investigational Drugs, vol. 20, no. 6, pp. 859–869, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Coxon, B. Ziegler, S. Kaufman, et al., “Antitumor activity of motesanib alone and in combination with cisplatin or docetaxel in multiple human non-small-cell lung cancer xenograft models,” Molecular Cancer, vol. 11, p. 70, 2012.
  66. M. Das and H. Wakelee, “Anti-angiogenic agents in Non-Small-Cell Lung Cancer (NSCLC): a perspective on the MONET1 (Motesanib NSCLC Efficacy and Tolerability) study,” Journal of Thoracic Disease, vol. 4, no. 6, pp. 558–561, 2012.
  67. S. R. Wedge, D. J. Ogilvie, M. Dukes et al., “ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration,” Cancer Research, vol. 62, no. 16, pp. 4645–4655, 2002. View at Scopus
  68. L. Zhang, S. Li, Y. Zhang et al., “Pharmacokinetics and tolerability of vandetanib in Chinese patients with solid, malignant tumors: an open-label, phase I, rising multiple-dose study,” Clinical Therapeutics, vol. 33, no. 3, pp. 315–327, 2011. View at Publisher · View at Google Scholar · View at Scopus
  69. J. V. Heymach, L. Paz-Ares, F. De Braud et al., “Randomized phase II study of vandetanib alone or with paclitaxel and carboplatin as first-line treatment for advanced non-small-cell lung cancer,” Journal of Clinical Oncology, vol. 26, no. 33, pp. 5407–5415, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. R. H. De Boer, Ó. Arrieta, C. H. Yang et al., “Vandetanib plus pemetrexed for the second-line treatment of advanced non-small-cell lung cancer: a randomized, double-blind phase III trial,” Journal of Clinical Oncology, vol. 29, no. 8, pp. 1067–1074, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. R. S. Herbst, Y. Sun, W. E. E. Eberhardt et al., “Vandetanib plus docetaxel versus docetaxel as second-line treatment for patients with advanced non-small-cell lung cancer (ZODIAC): a double-blind, randomised, phase 3 trial,” The Lancet Oncology, vol. 11, no. 7, pp. 619–626, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. J. S. Lee, V. Hirsh, K. Park, et al., “Vandetanib Versus placebo in patients with advanced non-small-cell lung cancer after prior therapy with an epidermal growth factor receptor tyrosine kinase inhibitor: a randomized, double-blind phase III trial (ZEPHYR),” Journal of Clinical Oncology, vol. 30, no. 10, pp. 1114–1121, 2012.
  73. H. A. Yu and G. J. Riely, “Second-generation epidermal growth factor receptor tyrosine kinase inhibitors in lung cancers,” Journal of the National Comprehensive Cancer Network, vol. 11, no. 2, pp. 161–169, 2013.
  74. M. C. Pietanza, S. M. Gadgeel, A. Dowlati, et al., “Phase II study of the multitargeted tyrosine kinase inhibitor XL647 in patients with non-small-cell lung cancer,” Journal of Thoracic Oncology, vol. 7, no. 5, pp. 856–865, 2012.
  75. S. B. Gendreau, R. Ventura, P. Keast et al., “Inhibition of the T790M gatekeeper mutant of the epidermal growth factor receptor by EXEL-7647,” Clinical Cancer Research, vol. 13, no. 12, pp. 3713–3723, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. M. C. Pietanza, T. J. Lynch Jr., P. N. Lara et al., “XL647-A multitargeted tyrosine kinase inhibitor: results of a phase II study in subjects with non-small cell lung cancer who have progressed after responding to treatment with either gefitinib or erlotinib,” Journal of Thoracic Oncology, vol. 7, no. 1, pp. 219–226, 2012. View at Publisher · View at Google Scholar · View at Scopus
  77. P. H. Marathe, A. V. Kamath, Y. Zhang, C. D'Arienzo, R. Bhide, and J. Fargnoli, “Preclinical pharmacokinetics and in vitro metabolism of brivanib (BMS-540215), a potent VEGFR2 inhibitor and its alanine ester prodrug brivanib alaninate,” Cancer Chemotherapy and Pharmacology, vol. 65, no. 1, pp. 55–66, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. R. S. Bhide, Z. W. Cai, Y. Z. Zhang et al., “Discovery and preclinical studies of (R)-1-(4-(4-fluoro-2-methyl-1H-indol-5-yloxy)-5-methylpyrrolo[2,1-f][1,2,4]triazin-6-yloxy)propan-2-ol (BMS-540215), an in vivo active potent VEGFR-2 inhibitor,” Journal of Medicinal Chemistry, vol. 49, no. 7, pp. 2143–2146, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. R. S. Bhide, L. J. Lombardo, J. T. Hunt et al., “The antiangiogenic activity in xenograft models of brivanib, a dual inhibitor of vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1 kinases,” Molecular Cancer Therapeutics, vol. 9, no. 2, pp. 369–378, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. T. Mekhail, E. Masson, B. S. Fischer et al., “Metabolism, excretion, and pharmacokinetics of oral brivanib in patients with advanced or metastatic solid tumors,” Drug Metabolism and Disposition, vol. 38, no. 11, pp. 1962–1966, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. D. J. Jonker, L. S. Rosen, M. B. Sawyer et al., “A phase I study to determine the safety, pharmacokinetics and pharmacodynamics of a dual VEGFR and FGFR inhibitor, brivanib, in patients with advanced or metastatic solid tumors,” Annals of Oncology, vol. 22, no. 6, pp. 1413–1419, 2011. View at Publisher · View at Google Scholar · View at Scopus
  82. F. Lee, M. N. Jure-Kunkel, and M. E. Salvati, “Synergistic activity of ixabepilone plus other anticancer agents: preclinical and clinical evidence,” Therapeutic Advances in Medical Oncology, vol. 3, no. 1, pp. 11–25, 2011. View at Publisher · View at Google Scholar · View at Scopus
  83. F. Hilberg, G. J. Roth, M. Krssak et al., “BIBF 1120: triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy,” Cancer Research, vol. 68, no. 12, pp. 4774–4782, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. M. Reck, R. Kaiser, C. Eschbach et al., “A phase II double-blind study to investigate efficacy and safety of two doses of the triple angiokinase inhibitor BIBF 1120 in patients with relapsed advanced non-small-cell lung cancer,” Annals of Oncology, vol. 22, no. 6, pp. 1374–1381, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. P. M. Ellis, R. Kaiser, Y. Zhao, P. Stopfer, S. Gyorffy, and N. Hanna, “Phase I open-label study of continuous treatment with BIBF 1120, a triple angiokinase inhibitor, and pemetrexed in pretreated non-small cell lung cancer patients,” Clinical Cancer Research, vol. 16, no. 10, pp. 2881–2889, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. R. C. Doebele, P. Conkling, A. M. Traynor, et al., “A phase I, open-label dose-escalation study of continuous treatment with BIBF, 1120 in combination with paclitaxel and carboplatin as first-line treatment in patients with advanced non-small-cell lung cancer,” Annals of Oncology, vol. 23, no. 8, pp. 2094–2102, 2012.
  87. R. Kumar, V. B. Knick, S. K. Rudolph et al., “Pharmacokinetic-pharmacodynamic correlation from mouse to human with pazopanib, a multikinase angiogenesis inhibitor with potent antitumor and antiangiogenic activity,” Molecular Cancer Therapeutics, vol. 6, no. 7, pp. 2012–2021, 2007. View at Publisher · View at Google Scholar · View at Scopus
  88. N. Altorki, M. E. Lane, T. Bauer et al., “Phase II proof-of-concept study of pazopanib monotherapy in treatment-naive patients with stage I/II resectable non-small-cell lung cancer,” Journal of Clinical Oncology, vol. 28, no. 19, pp. 3131–3137, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. R. Plummer, A. Madi, M. Jeffels, et al., “A Phase I study of pazopanib in combination with gemcitabine in patients with advanced solid tumors,” Cancer Chemotherapy and Pharmacology, vol. 71, no. 1, pp. 93–101, 2013.
  90. C. P. Belani, G. Goss, and G. Blumenschein, “Recent clinical developments and rationale for combining targeted agents in non-small cell lung cancer (NSCLC),” Cancer Treatment Reviews, vol. 38, no. 3, pp. 173–184, 2012. View at Publisher · View at Google Scholar · View at Scopus
  91. Y. L. Choi, M. Soda, Y. Yamashita et al., “EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors,” New England Journal of Medicine, vol. 363, no. 18, pp. 1734–1739, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. C. J. Langer, T. Mok, and P. E. Postmus, “Targeted agents in the third-/fourth-line treatment of patients with advanced (stage III/IV) non-small cell lung cancer (NSCLC),” Cancer Treatment Reviews, vol. 39, no. 3, pp. 252–260, 2013.
  93. E. S. Kim, R. S. Herbst, I. I. Wistuba, et al., “The BATTLE trial: personalizing therapy for lung cancer,” Cancer Discovery, vol. 1, no. 1, pp. 44–53.
  94. T. S. Mok, Y. L. Wu, S. Thongprasert et al., “Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma,” New England Journal of Medicine, vol. 361, no. 10, pp. 947–957, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. M. Ladanyi and W. Pao, “Lung adenocarcinoma: guiding EGFR-targeted therapy and beyond,” Modern Pathology, vol. 21, supplement 2, pp. S16–S22, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. V. A. Miller, M. G. Kris, N. Shah et al., “Bronchioloalveolar pathologic subtype and smoking history predict sensitivity to gefitinib in advanced non-small-cell lung cancer,” Journal of Clinical Oncology, vol. 22, no. 6, pp. 1103–1109, 2004. View at Publisher · View at Google Scholar · View at Scopus
  97. G. Holgersson, S. Bergström, M. Bergqvist et al., “Swedish Lung Cancer Radiation Study Group: pedictive value of histology for radiotherapy response in patients with non-small cell lung cancer,” European Journal of Cancer, vol. 47, no. 16, pp. 2415–2421, 2011. View at Publisher · View at Google Scholar · View at Scopus
  98. J. A. Engelman, K. Zejnullahu, T. Mitsudomi et al., “MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling,” Science, vol. 316, no. 5827, pp. 1039–1043, 2007. View at Publisher · View at Google Scholar · View at Scopus