About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 965417, 13 pages
http://dx.doi.org/10.1155/2013/965417
Review Article

Nutritional Properties of Dietary Omega-3-Enriched Phospholipids

Università degli Studi di Cagliari, Dipartimento di Scienze Biomediche, Cittadella Universitaria, S.S. 554, km. 4,500, Monserrato, 09042 Cagliari, Italy

Received 30 March 2013; Revised 4 June 2013; Accepted 7 June 2013

Academic Editor: Achille Cittadini

Copyright © 2013 Elisabetta Murru et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. X. Kang and A. Leaf, “Antiarrhythmic effects of polyunsaturated fatty acids: recent studies,” Circulation, vol. 94, no. 7, pp. 1774–1780, 1996. View at Scopus
  2. A. J. Richardson, “Long-chain polyunsaturated fatty acids in childhood developmental and psychiatric disorders,” Lipids, vol. 39, no. 12, Article ID L9638, pp. 1215–1222, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. S. M. Kwak, S. K. Myung, Y. J. Lee, and H. G. Seo, “Efficacy of omega-3 fatty acid supplements (eicosapentaenoic acid and docosahexaenoic acid) in the secondary prevention of cardiovascular disease: a meta-analysis of randomized, double-blind, placebo-controlled trials,” Archives of Internal Medicine, vol. 172, pp. 686–694, 2012.
  4. L. Burri, N. Hoem, S. Banni, and K. Berge, “Marine omega-3 phospholipids: metabolism and biological activities,” International Journal of Molecular Sciences, vol. 13, no. 11, pp. 15401–15419, 2012.
  5. W. E. Lands, “Long-term fat intake and biomarkers,” The American Journal of Clinical Nutrition, vol. 61, no. 3, pp. 721S–725S, 1995.
  6. T. H. Lee, R. L. Hoover, and J. D. Williams, “Effect of dietary enrichment with eicosapentaenoic and docosahexaenoic acids on in vitro neutrophil and monocyte leukotriene generation and neutrophil function,” The New England Journal of Medicine, vol. 312, no. 19, pp. 1217–1224, 1985. View at Scopus
  7. S. H. Goodnight Jr., W. S. Harris, W. E. Connor, and D. R. Illingworth, “Polyunsaturated fatty acids, hyperlipidemia, and thrombosis,” Arteriosclerosis, vol. 2, no. 2, pp. 87–113, 1982. View at Scopus
  8. P. C. Calder, “n-3 polyunsaturated fatty acids and cytokine production in health and disease,” Annals of Nutrition and Metabolism, vol. 41, no. 4, pp. 203–234, 1997. View at Scopus
  9. M. J. James and L. G. Cleland, “Dietary n-3 fatty acids and therapy for rheumatoid arthritis,” Seminars in Arthritis and Rheumatism, vol. 27, no. 2, pp. 85–97, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. A. P. Simopoulos, “Omega-3 fatty acids in health and disease and in growth and development,” American Journal of Clinical Nutrition, vol. 54, no. 3, pp. 438–463, 1991. View at Scopus
  11. M. J. James, R. A. Gibson, and L. G. Cleland, “Dietary polyunsaturated fatty acids and inflammatory mediator production,” American Journal of Clinical Nutrition, vol. 71, supplement 1, pp. 343S–348S, 2000. View at Scopus
  12. M. A. Crawford, “Background to essential fatty acids and their prostanoid derivatives,” British Medical Bulletin, vol. 39, no. 3, pp. 210–213, 1983. View at Scopus
  13. D. Hwang, “Essential fatty acids and immune response,” The FASEB Journal, vol. 3, no. 9, pp. 2052–2061, 1989. View at Scopus
  14. H. S. Hansen, B. Fjalland, and B. Jensen, “Extremely decreased release of prostaglandin E2-like activity from chopped lung of ethyl linolenate-supplemented rats,” Lipids, vol. 18, no. 10, pp. 691–695, 1983. View at Scopus
  15. D. Rees, E. A. Miles, T. Banerjee et al., “Dose-related effects of eicosapentaenoic acid on innate immune function in healthy humans: a comparison of young and older men,” American Journal of Clinical Nutrition, vol. 83, no. 2, pp. 331–342, 2006. View at Scopus
  16. K. J. Murphy, B. J. Meyer, T. A. Mori et al., “Impact of foods enriched with n-3 long-chain polyunsaturated fatty acids on erythrocyte n-3 levels and cardiovascular risk factors,” British Journal of Nutrition, vol. 97, no. 4, pp. 749–757, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Ferretti, G. J. Nelson, P. C. Schmidt, G. Bartolini, D. S. Kelley, and V. P. Flanagan, “Dietary docosahexaenoic acid reduces the thromboxane/prostacyclin synthetic ratio in humans,” Journal of Nutritional Biochemistry, vol. 9, no. 2, pp. 88–92, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Marchioli, F. Barzi, E. Bomba et al., “Early protection against sudden death by n-3 polyunsaturated fatty acids after myocardial infarction: time-course analysis of the results of the Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico (GISSI)-Prevenzione,” Circulation, vol. 105, no. 16, pp. 1897–1903, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. H. W. Seyberth, O. Oelz, and T. Kennedy, “Increased arachidonate in lipids after administration to man: effects on prostaglandin biosynthesis,” Clinical Pharmacology and Therapeutics, vol. 18, no. 5 I, pp. 521–529, 1975. View at Scopus
  20. A. Ferretti, G. J. Nelson, P. C. Schmidt, D. S. Kelley, G. Bartolini, and V. P. Flanagan, “Increased dietary arachidonic acid enhances the synthesis of vasoactive eicosanoids in humans,” Lipids, vol. 32, no. 4, pp. 435–439, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Pantaleo, F. Marra, F. Vizzutti et al., “Effects of dietary supplementation with arachidonic acid on platelet and renal function in patients with cirrhosis,” Clinical Science, vol. 106, no. 1, pp. 27–34, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. H. S. Hansen and A. Artmann, “Endocannabinoids and nutrition,” Journal of Neuroendocrinology, vol. 20, supplement 1, pp. 94–99, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. S. M. Prescott, “The effect of eicosapentaenoic acid on leukotriene B production by human neutrophils,” The Journal of Biological Chemistry, vol. 259, no. 12, pp. 7615–7621, 1984. View at Scopus
  24. C. J. Lammi-Keefe, D. E. Hammerschmidt, D. J. Weisdorf, and H. S. Jacob, “Influence of dietary omega-3 fatty acids on granulocyte function,” Inflammation, vol. 6, no. 3, pp. 227–234, 1982. View at Scopus
  25. A. Leaf, Y. Xiao, J. X. Kang, and G. E. Billman, “Prevention of sudden cardiac death by n-3 polyunsaturated fatty acids,” Pharmacology and Therapeutics, vol. 98, no. 3, pp. 355–377, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. M. H. Davidson, E. A. Stein, H. E. Bays et al., “Efficacy and tolerability of adding prescription Omega-3 fatty acids 4 g/d to Simvastatin 40 mg/d in hypertriglyceridemic patients: an 8-week, randomized, double-blind, placebo-controlled study,” Clinical Therapeutics, vol. 29, no. 7, pp. 1354–1367, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. K. C. Maki, J. M. McKenney, M. S. Reeves, B. C. Lubin, and M. R. Dicklin, “Effects of adding prescription omega-3 acid ethyl esters to simvastatin (20 mg/day) on lipids and lipoprotein particles in men and women with mixed dyslipidemia,” American Journal of Cardiology, vol. 102, no. 4, pp. 429–433, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Laidlaw and B. J. Holub, “Effects of supplementation with fish oil-derived n-3 fatty acids and γ-linolenic acid on circulating plasma lipids and fatty acid profiles in women,” American Journal of Clinical Nutrition, vol. 77, no. 1, pp. 37–42, 2003. View at Scopus
  29. D. R. Tocher, J. G. Bell, B. M. Farndale, and J. R. Sargent, “Effects of dietary γ-linolenic acid-rich borage oil combined with marine fish oils on tissue phospholipid fatty acid composition and production of prostaglandins E and F of the 1-, 2- and 3-series in a marine fish deficient in Δ5 fatty acyl desaturase,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 57, no. 2, pp. 125–134, 1997. View at Publisher · View at Google Scholar · View at Scopus
  30. R. S. Chapkin, S. D. Somers, and K. L. Erickson, “Dietary manipulation of macrophage phospholipid classes: selective increase of dihomogammalinoleic acid,” Lipids, vol. 23, no. 8, pp. 766–770, 1988. View at Scopus
  31. J. B. Barham, M. B. Edens, A. N. Fonteh, M. M. Johnson, L. Easter, and F. H. Chilton, “Addition of eicosapentaenoic acid to γ-linolenic acid-supplemented diets prevents serum arachidonic acid accumulation in humans,” Journal of Nutrition, vol. 130, no. 8, pp. 1925–1931, 2000. View at Scopus
  32. D. Rubin and M. Laposata, “Cellular interactions between n-6 and n-3 fatty acids: a mass analysis of fatty acid elongation/desaturation, distribution among complex lipids, and conversion to eicosanoids,” Journal of Lipid Research, vol. 33, no. 10, pp. 1431–1440, 1992. View at Scopus
  33. T. Ishikawa, Y. Fujiyama, O. Igarashi et al., “Effects of gammalinolenic acid on plasma lipoproteins and apolipoproteins,” Atherosclerosis, vol. 75, no. 2-3, pp. 95–104, 1989. View at Scopus
  34. J. L. Durstine, P. W. Grandjean, C. A. Cox, and P. D. Thompson, “Lipids, lipoproteins, and exercise,” Journal of Cardiopulmonary Rehabilitation, vol. 22, no. 6, pp. 385–398, 2002. View at Scopus
  35. T. Kuusi, E. Kostiainen, and E. Vartianen, “Acute effects of marathon running on levels of serum lipoproteins and androgenic hormones in healthy males,” Metabolism, vol. 33, no. 6, pp. 527–531, 1984. View at Scopus
  36. W. Herrmann, J. Biermann, and G. M. Kostner, “Comparison of effects of N-3 to N-6 fatty acids on serum level of lipoprotein(a) in patients with coronary artery disease,” American Journal of Cardiology, vol. 76, no. 7, pp. 459–462, 1995. View at Publisher · View at Google Scholar · View at Scopus
  37. B. E. Phillipson, D. W. Rothrock, and W. E. Connor, “Reduction of plasma lipids, lipoproteins, and apoproteins by dietary fish oils in patients with hypertriglyceridemia,” The New England Journal of Medicine, vol. 312, no. 19, pp. 1210–1216, 1985. View at Scopus
  38. W. S. Harris, W. E. Connor, D. R. Illingworth, D. W. Rothrock, and D. M. Foster, “Effects of fish oil on VLDL triglyceride kinetics in humans,” Journal of Lipid Research, vol. 31, no. 9, pp. 1549–1558, 1990. View at Scopus
  39. J. Hansen, S. Grimsgaard, H. Nilsen, A. Nordøy, and K. H. Bønaa, “Effects of highly purified eicosapentaenoic acid and docosahexaenoic acid on fatty acid absorption, incorporation into serum phospholipids and postprandial triglyceridemia,” Lipids, vol. 33, no. 2, pp. 131–138, 1998. View at Publisher · View at Google Scholar · View at Scopus
  40. K. Berge, F. Piscitelli, HoemN et al., “Chronic treatment with krill powder reduces plasma triglyceride and anandamide levels in mildly obese men,” Lipids in Health and Disease, vol. 12, article 78, 2013.
  41. F. Marangoni, M. T. Angeli, S. Colli et al., “Changes of n-3 and n-6 fatty acids in plasma and circulating cells or normal subjects, after prolonged administration of 20:5 (EPA) and 22:6 (DHA) ethyl esters and prolonged washout,” Biochimica et Biophysica Acta, vol. 1210, no. 1, pp. 55–62, 1993. View at Publisher · View at Google Scholar · View at Scopus
  42. P. V. Subbaiah, D. Kaufman, and J. D. Bagdade, “Incorporation of dietary n-3 fatty acids into molecular species of phosphatidyl choline and cholesteryl ester in normal human plasma,” American Journal of Clinical Nutrition, vol. 58, no. 3, pp. 360–368, 1993. View at Scopus
  43. T. Terano, A. Hirai, Y. Tamura, A. Kumagai, and S. Yoshida, “Effect of dietary supplementation of highly purified eicosapentaenoic acid and docosahexaenoic acid on arachidonic acid metabolism in leukocytes and leukocyte function in healthy volunteers,” Advances in Prostaglandin, Thromboxane, and Leukotriene research, vol. 17, pp. 880–885, 1987. View at Scopus
  44. K. Hamazaki, M. Itomura, M. Huan et al., “Effect of ω-3 fatty acid-containing phospholipids on blood catecholamine concentrations in healthy volunteers: a randomized, placebo-controlled, double-blind trial,” Nutrition, vol. 21, no. 6, pp. 705–710, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. N. Willumsen, S. Hexeberg, J. Skorve, M. Lundquist, and R. K. Berge, “Docosahexaenoic acid shows no triglyceride-lowering effects but increases the peroxisomal fatty acid oxidation in liver of rats,” Journal of Lipid Research, vol. 34, no. 1, pp. 13–22, 1993. View at Scopus
  46. S. Grimsgaard, K. H. Bønaa, J. Hansen, and A. Nordøy, “Highly purified eicosapentaenoic acid and docosahexaenoic acid in humans have similar triacylglycerol-lowering effects but divergent effects on serum fatty acids,” American Journal of Clinical Nutrition, vol. 66, no. 3, pp. 649–659, 1997. View at Scopus
  47. L. Cobiac, P. M. Clifton, M. Abbey, G. B. Belling, and P. J. Nestel, “Lipid, lipoprotein, and hemostatic effects of fish vs fish-oil n-3 fatty acids in mildly hyperlipidemic males,” American Journal of Clinical Nutrition, vol. 53, no. 5, pp. 1210–1216, 1991. View at Scopus
  48. B. Batetta, M. Griinari, G. Carta et al., “Endocannabinoids may mediate the ability of (n-3) fatty acids to reduce ectopic fat and inflammatory mediators in obese Zucker rats,” Journal of Nutrition, vol. 139, no. 8, pp. 1495–1501, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. F. Visioli, P. Risè, E. Plasmati, F. Pazzucconi, C. R. Sirtori, and C. Galli, “Very low intakes of n-3 fatty acids incorporated into bovine milk reduce plasma triacylglycerol and increase HDL-cholesterol concentrations in healthy subjects,” Pharmacological Research, vol. 41, no. 5, pp. 571–576, 2000. View at Publisher · View at Google Scholar · View at Scopus
  50. L. A. Horrocks and Y. K. Yeo, “Health benefits of docosahexaenoic acid (DHA),” Pharmacological Research, vol. 40, no. 3, pp. 211–225, 1999. View at Publisher · View at Google Scholar · View at Scopus
  51. C. Galli, F. M. Maggi, P. Risé, and C. R. Sirtori, “Bioequivalence of two omega-3 fatty acid ethyl ester formulations: a case of clinical pharmacology of dietary supplements,” British Journal of Clinical Pharmacology, vol. 74, no. 1, pp. 60–65, 2012.
  52. P. M. Kris-Etherton, S. Innis, Ammerican Dietetic Assocition, and Dietitians of Canada, “Position of the American Dietetic Association and Dietitians of Canada: dietary fatty acids,” Journal of the American Dietetic Association, vol. 107, no. 9, pp. 1599–1611, 2007.
  53. A. H. Lichtenstein, L. J. Appel, M. Brands et al., “Diet and lifestyle recommendations revision 2006: a scientific statement from the American Heart Association Nutrition Committee,” Circulation, vol. 114, no. 1, pp. 82–96, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. D. Mozaffarian and E. B. Rimm, “Fish intake, contaminants, and human health evaluating the risks and the benefits,” Journal of the American Medical Association, vol. 296, no. 15, pp. 1885–1899, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. K. Musa-Veloso, M. A. Binns, A. C. Kocenas et al., “Long-chain omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid dose-dependently reduce fasting serum triglycerides,” Nutrition Reviews, vol. 68, no. 3, pp. 155–167, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. J. M. McKenney and D. Sica, “Role of prescription omega-3 fatty acids in the treatment of hypertriglyceridemia,” Pharmacotherapy, vol. 27, no. 5, pp. 715–728, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. A. C. Skulas-Ray, P. M. Kris-Etherton, W. S. Harris, J. P. Vanden Heuvel, P. R. Wagner, and S. G. West, “Dose-response effects of omega-3 fatty acids on triglycerides, inflammation, and endothelial function in healthy persons with moderate hypertriglyceridemia,” American Journal of Clinical Nutrition, vol. 93, no. 2, pp. 243–252, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. J. R. Marszalek and H. F. Lodish, “Docosahexaenoic acid, fatty acid-interacting proteins, and neuronal function: breastmilk and fish are good for you,” Annual Review of Cell and Developmental Biology, vol. 21, pp. 633–657, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Pan, M. Chen, R. Chowdhury et al., “α-linolenic acid and risk of cardiovascular disease: a systematic review and meta-analysis,” The American Journal of Clinical Nutrition, vol. 96, pp. 1262–1273, 2012.
  60. A. B. R. Thomson, M. Keelan, M. L. Garg, and M. T. Clandinin, “Intestinal aspects of lipid absorption: in review,” Canadian Journal of Physiology and Pharmacology, vol. 67, no. 3, pp. 179–191, 1989. View at Scopus
  61. M. Ramírez, L. Amate, and A. Gil, “Absorption and distribution of dietary fatty acids from different sources,” Early Human Development, vol. 65, no. 2, pp. S95–S101, 2001. View at Publisher · View at Google Scholar · View at Scopus
  62. R. M. Tomarelli, B. J. Meyer, J. R. Weaber, and F. W. Bernhart, “Effect of positional distribution on the absorption of the fatty acids of human milk and infant formulas,” Journal of Nutrition, vol. 95, no. 4, pp. 583–590, 1968. View at Scopus
  63. C. Galli, C. R. Sirtori, C. Mosconi et al., “Prolonged retention of doubly labeled phosphatidylcholine in human plasma and erythrocytes after oral administration,” Lipids, vol. 27, no. 12, pp. 1005–1012, 1992. View at Publisher · View at Google Scholar · View at Scopus
  64. B. Arnesjö, A. Nilsson, J. Barrowman, and B. Borgström, “Intestinal digestion and absorption of cholesterol and lecithin in the human. Intubation studies with a fat-soluble reference substance,” Scandinavian Journal of Gastroenterology, vol. 4, no. 8, pp. 653–665, 1969. View at Scopus
  65. P. Tso, “Intestinal lipid absorption,” in Physiology of the Gastrointestinal Tract, L. R. Johnson, Ed., vol. 56, pp. 1867–1907, Raven Press, New York, NY, USA, 1994.
  66. O. Zierenberg and S. M. Grundy, “Intestinal absorption of polyenephosphatidylcholine in man,” Journal of Lipid Research, vol. 23, no. 8, pp. 1136–1142, 1982. View at Scopus
  67. D. L. Kim and H. Betzing, “Intestinal absorption of polyunsaturated phosphatidylcholine in the rat,” Hoppe-Seyler's Zeitschrift fur Physiologische Chemie, vol. 357, no. 9, pp. 1321–1331, 1976. View at Scopus
  68. A. R. Tall, C. B. Blum, and S. M. Grundy, “Incorporation of radioactive phospholipid into subclasses of high-density lipoproteins,” The American Journal of Physiology, vol. 244, no. 5, pp. E513–E516, 1983. View at Scopus
  69. P. Tso, D. S. Drake, D. D. Black, and S. M. Sabesin, “Evidence for separate pathways of chylomicron and very low-density lipoprotein assembly and transport by rat small intestine,” The American Journal of Physiology, vol. 247, no. 6, pp. G599–G610, 1984. View at Scopus
  70. L. Amate, A. Gil, and M. Ramírez, “Feeding infant piglets formula with long-chain polyunsaturated fatty acids as triacylglycerols or phospholipids influences the distribution of these fatty acids in plasma lipoprotein fractions,” Journal of Nutrition, vol. 131, no. 4, pp. 1250–1255, 2001. View at Scopus
  71. V. P. Carnielli, G. Verlato, F. Pederzini et al., “Intestinal absorption of long-chain polyunsaturated fatty acids in preterm infants fed breast milk or formula,” American Journal of Clinical Nutrition, vol. 67, no. 1, pp. 97–103, 1998. View at Scopus
  72. K. C. Maki, M. S. Reeves, M. Farmer et al., “Krill oil supplementation increases plasma concentrations of eicosapentaenoic and docosahexaenoic acids in overweight and obese men and women,” Nutrition Research, vol. 29, no. 9, pp. 609–615, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. J. P. Schuchardt, I. Schneider, H. Meyer, J. Neubronner, C. von Schacky, and A. Hahn, “Incorporation of EPA and DHA into plasma phospholipids in response to different omega-3 fatty acid formulations—a comparative bioavailability study of fish oil vs. krill oil,” Lipids in Health and Disease, vol. 10, article 145, 2011.
  74. W. E. Lands, “Metabolism of glycerolipids. 2. The enzymatic acylation of lysolecithin,” The Journal of Biological Chemistry, vol. 235, pp. 2233–2237, 1960. View at Scopus
  75. M. L. McKean, J. B. Smith, and M. J. Silver, “Phospholipid biosynthesis in human platelets. Formation of phosphatidylcholine from 1-acyl lysophosphatidylcholine by ACYL-CoA:1-ACYL-sn-glycero-3-phosphocholine acyltransferase,” The Journal of Biological Chemistry, vol. 257, no. 19, pp. 11278–11283, 1982. View at Scopus
  76. E. J. Neufeld, D. B. Wilson, H. Sprecher, and P. W. Majerus, “High affinity esterification of eicosanoid precursor fatty acids by platelets,” Journal of Clinical Investigation, vol. 72, no. 1, pp. 214–220, 1983. View at Scopus
  77. A. M. Bakken and M. Farstad, “The activities of acyl-CoA: 1-acyl-lysophospholipid acyltransferase(s) in human platelets,” Biochemical Journal, vol. 288, no. 3, pp. 763–770, 1992. View at Scopus
  78. D. Lemaitre-Delaunay, C. Pachiaudi, M. Laville, J. Pousin, M. Armstrong, and M. Lagarde, “Blood compartmental metabolism of docosahexaenoic acid (DHA) in humans after ingestion of a single dose of [13C]DHA in phosphatidylcholine,” Journal of Lipid Research, vol. 40, no. 10, pp. 1867–1874, 1999. View at Scopus
  79. N. Brossard, M. Croset, S. Normand et al., “Human plasma albumin transports [13C]docosahexaenoic acid in two lipid forms to blood cells,” Journal of Lipid Research, vol. 38, no. 8, pp. 1571–1582, 1997. View at Scopus
  80. A. Tamura, T. Tanaka, and T. Yamane, “Quantitative studies on translocation and metabolic conversion of lysophosphatidylcholine incorporated into the membrane of intact human erythrocytes from the medium,” Journal of Biochemistry, vol. 97, no. 1, pp. 353–359, 1985. View at Scopus
  81. S. M. Innis, “Plasma and red blood cell fatty acid values as indexes of essential fatty acids in the developing organs of infants fed with milk or formulas,” Journal of Pediatrics, vol. 120, no. 4, pp. 78–86, 1992. View at Scopus
  82. F. Thies, C. Pillon, P. Moliere, M. Lagarde, and J. Lecerf, “Preferential incorporation of sn-2 lysoPC DHA over unesterified DHA in the young rat brain,” American Journal of Physiology, vol. 267, no. 5, pp. R1273–R1279, 1994. View at Scopus
  83. S. M. Polvi and R. G. Ackman, “Atlantic salmon (Salmo salar) muscle lipids and their response to alternative dietary fatty acid sources,” Journal of Agricultural and Food Chemistry, vol. 40, no. 6, pp. 1001–1007, 1992. View at Scopus
  84. J. S. Cohn, E. Wat, A. Kamili, and S. Tandy, “Dietary phospholipids, hepatic lipid metabolism and cardiovascular disease,” Current Opinion in Lipidology, vol. 19, no. 3, pp. 257–262, 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. E. Wat, S. Tandy, E. Kapera et al., “Dietary phospholipid-rich dairy milk extract reduces hepatomegaly, hepatic steatosis and hyperlipidemia in mice fed a high-fat diet,” Atherosclerosis, vol. 205, no. 1, pp. 144–150, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. A. Kolakowska, E. Kolakowska, and M. Szcygielski, “Winter season krill (Euphausia superba Dana),” Nahrung, vol. 38, pp. 128–134, 1994.
  87. J. C. Tou, J. Jaczynski, and Y. Chen, “Krill for human consumption: nutritional value and potential health benefits,” Nutrition Reviews, vol. 65, no. 2, pp. 63–77, 2007. View at Publisher · View at Google Scholar · View at Scopus
  88. R. Bunea, K. El Farrah, and L. Deutsch, “Evaluation of the effects of Neptune Krill Oil on the clinical course of hyperlipidemia,” Alternative Medicine Review, vol. 9, no. 4, pp. 420–428, 2004. View at Scopus
  89. L. Deutsch, “Evaluation of the effect of neptune krill oil on chronic inflammation and arthritic symptoms,” Journal of the American College of Nutrition, vol. 26, no. 1, pp. 39–48, 2007. View at Scopus
  90. S. M. Ulven, B. Kirkhus, A. Lamglait et al., “Metabolic effects of krill oil are essentially similar to those of fish oil but at lower dose of EPA and DHA, in healthy volunteers,” Lipids, vol. 46, no. 1, pp. 37–46, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. K. C. Maki, M. S. Reeves, M. Farmer et al., “Krill oil supplementation increases plasma concentrations of eicosapentaenoic and docosahexaenoic acids in overweight and obese men and women,” Nutrition Research, vol. 29, no. 9, pp. 609–615, 2009. View at Publisher · View at Google Scholar · View at Scopus
  92. W. S. Harris, “n-3 fatty acids and serum lipoproteins: human studies,” The American Journal of Clinical Nutrition, vol. 65, pp. 1645S–1654S, 1997.
  93. T. Madsen, J. H. Christensen, M. Blom, and E. B. Schmidt, “The effect of dietary n-3 fatty acids on serum concentrations of C-reactive protein: a dose-response study,” British Journal of Nutrition, vol. 89, no. 4, pp. 517–522, 2003. View at Publisher · View at Google Scholar · View at Scopus
  94. A. Geelen, I. A. Brouwer, E. G. Schouten, C. Kluft, M. B. Katan, and P. L. Zock, “Intake of n-3 fatty acids from fish does not lower serum concentrations of C-reactive protein in healthy subjects,” European Journal of Clinical Nutrition, vol. 58, no. 10, pp. 1440–1442, 2004. View at Publisher · View at Google Scholar · View at Scopus
  95. D. A. de Luis, R. Conde, R. Aller et al., “Effect of omega-3 fatty-acids on cardiovascular risk factors in patients with type 2 diabetes mellitus and hypertriglyceridemia: an open study,” European Review for Medical and Pharmacological Sciences, vol. 13, no. 1, pp. 51–55, 2009. View at Scopus
  96. M. Rossmeisl, Z. Macek Jilkova, O. Kuda et al., “Metabolic effects of n-3 PUFA as phospholipids are superior to triglycerides in mice fed a high-fat diet: possible role of endocannabinoids,” PLoS One, vol. 7, no. 6, Article ID e38834, 2012.
  97. S. Tandy, R. W. S. Chung, W. A. T. Elaine, A. K. K. Berge, M. Griinari, and J. S. Cohn, “Dietary krill oil supplementation reduces hepatic steatosis, glycemia, and hypercholesterolemia in high-fat-fed mice,” Journal of Agricultural and Food Chemistry, vol. 57, no. 19, pp. 9339–9345, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. F. Piscitelli, G. Carta, T. Bisogno et al., “Effect of dietary krill oil supplementation on the endocannabinoidome of metabolically relevant tissues from high-fat-fed mice,” Nutrition and Metabolism, vol. 8, article 51, 2011. View at Publisher · View at Google Scholar · View at Scopus
  99. M. V. Chakravarthy, I. J. Lodhi, L. Yin et al., “Identification of a physiologically relevant endogenous ligand for PPARα in liver,” Cell, vol. 138, no. 3, pp. 476–488, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. Y. Li, M. Choi, G. Cavey et al., “Crystallographic identification and functional characterization of phospholipids as ligands for the orphan nuclear receptor steroidogenic factor-1,” Molecular Cell, vol. 17, no. 4, pp. 491–502, 2005. View at Publisher · View at Google Scholar · View at Scopus
  101. M. S. Cansell, A. Battin, P. Degrace, J. Gresti, P. Clouet, and N. Combe, “Early dissimilar fates of liver eicosapentaenoic acid in rats fed liposomes or fish oil and gene expression related to lipid metabolism,” Lipids, vol. 44, no. 3, pp. 237–247, 2009. View at Publisher · View at Google Scholar · View at Scopus
  102. J. P. Schuchardt, I. Schneider, H. Meyer, et al., “Incorporation of EPA and DHA into plasma phospholipids in response to different omega-3 fatty acid formulations-a comparative bioavailability study of fish oil vs. krill oil,” Lipids in Health and Disease, vol. 10, article 145, 2011.
  103. J. R. Hibbeln, “Fish consumption and major depression,” The Lancet, vol. 351, no. 9110, p. 1213, 1998. View at Scopus
  104. S. Noaghiul and J. R. Hibbeln, “Cross-national comparisons of seafood consumption and rates of bipolar disorders,” American Journal of Psychiatry, vol. 160, no. 12, pp. 2222–2227, 2003. View at Publisher · View at Google Scholar · View at Scopus
  105. J. R. Hibbeln, T. A. Ferguson, and T. L. Blasbalg, “Omega-3 fatty acid deficiencies in neurodevelopment, aggression and autonomic dysregulation: opportunities for intervention,” International Review of Psychiatry, vol. 18, no. 2, pp. 107–118, 2006. View at Publisher · View at Google Scholar · View at Scopus
  106. J. R. Hibbeln and N. Salem Jr., “Dietary polyunsaturated fatty acids and depression: when cholesterol does not satisfy,” American Journal of Clinical Nutrition, vol. 62, no. 1, pp. 1–9, 1995. View at Scopus
  107. G. Young and J. Conquer, “Omega-3 fatty acids and neuropsychiatric disorders,” Reproduction Nutrition Development, vol. 45, no. 1, pp. 1–28, 2005. View at Publisher · View at Google Scholar · View at Scopus
  108. B. Hallahan, J. R. Hibbeln, J. M. Davis, and M. R. Garland, “Omega-3 fatty acid supplementation in patients with recurrent self-harm: single-centre double-blind randomised controlled trial,” British Journal of Psychiatry, vol. 190, pp. 118–122, 2007. View at Publisher · View at Google Scholar · View at Scopus
  109. A. L. Stoll, W. E. Severus, M. P. Freeman et al., “Omega 3 fatty acids in bipolar disorder: a preliminary double-blind, placebo-controlled trial,” Archives of General Psychiatry, vol. 56, no. 5, pp. 407–412, 1999. View at Publisher · View at Google Scholar · View at Scopus
  110. K. Su, S. Huang, C. Chiu, and W. W. Shen, “Omega-3 fatty acids in major depressive disorder: a preliminary double-blind, placebo-controlled trial,” European Neuropsychopharmacology, vol. 13, no. 4, pp. 267–271, 2003. View at Publisher · View at Google Scholar · View at Scopus
  111. M. C. Zanarini and F. R. Frankenburg, “Omega-3 fatty acid treatment of women with borderline personality disorder: a double-blind, placebo-controlled pilot study,” American Journal of Psychiatry, vol. 160, no. 1, pp. 167–169, 2003. View at Publisher · View at Google Scholar · View at Scopus
  112. N. Vaisman, N. Kaysar, Y. Zaruk-Adasha et al., “Correlation between changes in blood fatty acid composition and visual sustained attention performance in children with inattention: effect of dietary n-3 fatty acids containing phospholipids,” American Journal of Clinical Nutrition, vol. 87, no. 5, pp. 1170–1180, 2008. View at Scopus
  113. H. Sadou, C. L. Leger, B. Descomps, J.-N. Barjon, L. Monnier, and A. C. De Paulet, “Differential incorporation of fish-oil eicosapentaenoate and docosahexaenoate into lipids of lipoprotein fractions as related to their glyceryl esterification: a short-term (postprandial) and long-term study in healthy humans,” American Journal of Clinical Nutrition, vol. 62, no. 6, pp. 1193–1200, 1995. View at Scopus
  114. M. L. Garg, E. Sebokova, A. B. R. Thomson, and M. T. Clandinin, “Δ6-Desaturase activity in liver microsomes of rats fed diets enriched with cholesterol and/or ω3 fatty acids,” Biochemical Journal, vol. 249, no. 2, pp. 351–356, 1988. View at Scopus
  115. M. L. Garg, A. B. R. Thomson, and M. T. Clandinin, “Effect of dietary cholesterol and/or ω3 fatty acids on lipid composition and Δ5-desaturase activity of rat liver microsomes,” Journal of Nutrition, vol. 118, no. 6, pp. 661–668, 1988. View at Scopus
  116. L. Stevens, W. Zhang, L. Peck et al., “EFA supplementation in children with inattention, hyperactivity, and other disruptive behaviors,” Lipids, vol. 38, no. 10, pp. 1007–1021, 2003. View at Scopus
  117. R. G. Voigt, A. M. Llorente, C. L. Jensen, J. K. Fraley, M. C. Berretta, and W. C. Heird, “A randomized, double-blind, placebo-controlled trial of docosahexaenoic acid supplementation in children with attention-deficit/hyperactivity disorder,” Journal of Pediatrics, vol. 139, no. 2, pp. 189–196, 2001. View at Publisher · View at Google Scholar · View at Scopus
  118. S. Hirayama, T. Hamazaki, and K. Terasawa, “Effect of docosahexaenoic acid-containing food administration on symptoms of attention-deficit/hyperactivity disorder—a placebo-controlled double-blind study,” European Journal of Clinical Nutrition, vol. 58, no. 3, pp. 467–473, 2004. View at Publisher · View at Google Scholar · View at Scopus
  119. A. Zanotti, L. Valzelli, and G. Toffano, “Chronic phosphatidylserine treatment improves spatial memory and passive avoidance in aged rats,” Psychopharmacology, vol. 99, no. 3, pp. 316–321, 1989. View at Scopus
  120. F. Drago, P. L. Canonico, and U. Scapagnini, “Behavioral effects of phosphatidylserine in aged rats,” Neurobiology of Aging, vol. 2, no. 3, pp. 209–213, 1981. View at Publisher · View at Google Scholar · View at Scopus
  121. J. C. Castilho, J. C. Perry, R. Andreatini, and M. A. B. F. Vital, “Phosphatidylserine: an antidepressive or a cognitive enhancer?” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 28, no. 4, pp. 731–738, 2004. View at Publisher · View at Google Scholar · View at Scopus
  122. A. J. Richardson and P. Montgomery, “Oxford-Durham study: a randomized, controlled trial of dietary supplementation with fatty acids in children with developmental coordination disorder,” Pediatrics, vol. 115, no. 5, pp. 1360–1366, 2005. View at Publisher · View at Google Scholar · View at Scopus
  123. A. J. Richardson and B. K. Puri, “A randomized double-blind, placebo-controlled study of the effects of supplementation with highly unsaturated fatty acids on ADHD-related symptoms in children with specific learning difficulties,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 26, no. 2, pp. 233–239, 2002. View at Publisher · View at Google Scholar · View at Scopus
  124. N. Sinn and J. Bryan, “Effect of supplementation with polyunsaturated fatty acids and micronutrients on learning and behavior problems associated with child ADHD,” Journal of Developmental and Behavioral Pediatrics, vol. 28, no. 2, pp. 82–91, 2007. View at Publisher · View at Google Scholar · View at Scopus
  125. V. Wijendran, M. Huang, G. Diau, G. Boehm, P. W. Nathanielsz, and J. T. Brenna, “Efficacy of dietary arachidonic acid provided as triglyceride or phospholipid as substrates for brain arachidonic acid accretion in baboon neonates,” Pediatric Research, vol. 51, no. 3, pp. 265–272, 2002. View at Scopus
  126. W. A. Devane, L. Hanus, A. Breuer et al., “Isolation and structure of a brain constituent that binds to the cannabinoid receptor,” Science, vol. 258, no. 5090, pp. 1946–1949, 1992. View at Scopus
  127. T. Sugiura, “Transacylase-mediated and phosphodiesterase-mediated synthesis of N-arachidonoylethanolamine, an endogenous cannabinoid-receptor ligand, in rat brain microsomes Comparison with synthesis from free arachidonic acid and ethanolamine,” European Journal of Biochemistry, vol. 240, no. 1, pp. 53–62, 1996. View at Scopus
  128. H. H. O. Schmid, “Pathways and mechanisms of N-acylethanolamine biosynthesis: can anandamide be generated selectively?” Chemistry and Physics of Lipids, vol. 108, no. 1-2, pp. 71–87, 2000. View at Publisher · View at Google Scholar · View at Scopus
  129. R. Mechoulam, S. Ben-Shabat, L. Hanuš et al., “Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors,” Biochemical Pharmacology, vol. 50, no. 1, pp. 83–90, 1995. View at Publisher · View at Google Scholar · View at Scopus
  130. T. Sugiura, S. Kondo, A. Sukagawa et al., “2-arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain,” Biochemical and Biophysical Research Communications, vol. 215, no. 1, pp. 89–97, 1995. View at Publisher · View at Google Scholar · View at Scopus
  131. T. Bisogno, F. Howell, G. Williams et al., “Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain,” Journal of Cell Biology, vol. 163, no. 3, pp. 463–468, 2003. View at Publisher · View at Google Scholar · View at Scopus
  132. N. Stella, P. Schweitzer, and D. Plomelli, “A second endogenous' cannabinoid that modulates long-term potentiation,” Nature, vol. 388, no. 6644, pp. 773–778, 1997. View at Publisher · View at Google Scholar · View at Scopus
  133. C. Thabuis, D. Tissot-Favre, J. Bezelgues et al., “Biological functions and metabolism of oleoylethanolamide,” Lipids, vol. 43, no. 10, pp. 887–894, 2008. View at Publisher · View at Google Scholar · View at Scopus
  134. J. LoVerme, G. La Rana, R. Russo, A. Calignano, and D. Piomelli, “The search for the palmitoylethanolamide receptor,” Life Sciences, vol. 77, no. 14, pp. 1685–1698, 2005. View at Publisher · View at Google Scholar · View at Scopus
  135. B. Costa, F. Comelli, I. Bettoni, M. Colleoni, and G. Giagnoni, “The endogenous fatty acid amide, palmitoylethanolamide, has anti-allodynic and anti-hyperalgesic effects in a murine model of neuropathic pain: involvement of CB1, TRPV1 and PPARγ receptors and neurotrophic factors,” Pain, vol. 139, no. 3, pp. 541–550, 2008. View at Publisher · View at Google Scholar · View at Scopus
  136. M. H. Bracey, M. A. Hanson, K. R. Masuda, R. C. Stevens, and B. F. Cravatt, “Structural adaptations in a membrane enzyme that terminates endocannabinoid signaling,” Science, vol. 298, no. 5599, pp. 1793–1796, 2002. View at Publisher · View at Google Scholar · View at Scopus
  137. M. K. McKinney and B. E. Cravatt, “Structure and function of fatty acid amide hydrolase,” Annual Review of Biochemistry, vol. 74, pp. 411–432, 2005. View at Publisher · View at Google Scholar · View at Scopus
  138. M. Karlsson, J. A. Contreras, U. Hellman, H. Tornqvist, and C. Holm, “cDNA cloning, tissue distribution, and identification of the catalytic triad of monoglyceride lipase. Evolutionary relationship to esterases, lysophospholipases, and haloperoxidases,” The Journal of Biological Chemistry, vol. 272, no. 43, pp. 27218–27223, 1997. View at Publisher · View at Google Scholar · View at Scopus
  139. T. P. Dinh, D. Carpenter, F. M. Leslie et al., “Brain monoglyceride lipase participating in endocannabinoid inactivation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 16, pp. 10819–10824, 2002. View at Publisher · View at Google Scholar · View at Scopus
  140. V. Di Marzo, A. Fontana, H. Cadas et al., “Formation and inactivation of endogenous cannabinoid anandanide in central neurons,” Nature, vol. 372, no. 6507, pp. 686–691, 1994. View at Scopus
  141. V. Di Marzo, T. Bisogno, T. Sugiura, D. Melck, and L. De Petrocellis, “The novel endogenous cannabinoid 2-arachidonoylglycerol is inactivated by neuronal- and basophil-like cells: connections with anandamide,” Biochemical Journal, vol. 331, no. 1, pp. 15–19, 1998. View at Scopus
  142. A. Berger and M. A. Roberts, Eds., Dietary Effects of Arachidonate-Rich Fungal Oil and Fish Oil on Murine Hippocampal Gene Expression, Marcel Dekker, New York, NY, USA, 2005.
  143. A. Berger, D. M. Mutch, J. B. German, and M. A. Roberts, “Dietary effects of arachidonate-rich fungal oil and fish oil on murinehepatic and hippocampal gene expression,” Lipids in Health and Disease, vol. 1, article 1, pp. 1–23, 2002. View at Publisher · View at Google Scholar · View at Scopus
  144. A. Berger, M. A. Roberts, and B. Hoff, “How dietary arachidonic- and docosahexaenoic- acid rich oils differentially affect the murine hepatic transcriptome,” Lipids in Health and Disease, vol. 5, article 10, 2006. View at Publisher · View at Google Scholar · View at Scopus
  145. S. Watanabe, M. Doshi, and T. Hamazaki, “n-3 Polyunsaturated fatty acid (PUFA) deficiency elevates and n-3 PUFA enrichment reduces brain 2-arachidonoylglycerol level in mice,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 69, no. 1, pp. 51–59, 2003. View at Publisher · View at Google Scholar · View at Scopus
  146. I. Matias, G. Carta, E. Murru, S. Petrosino, S. Banni, and V. Di Marzo, “Effect of polyunsaturated fatty acids on endocannabinoid and N-acyl-ethanolamine levels in mouse adipocytes,” Biochimica et Biophysica Acta, vol. 1781, no. 1-2, pp. 52–60, 2008. View at Publisher · View at Google Scholar · View at Scopus
  147. I. Matias, M.-P. Gonthier, S. Petrosino et al., “Role and regulation of acylethanolamides in energy balance: focus on adipocytes and β-cells,” British Journal of Pharmacology, vol. 152, no. 5, pp. 676–690, 2007. View at Publisher · View at Google Scholar · View at Scopus
  148. I. Matias, S. Petrosino, A. Racioppi, R. Capasso, A. A. Izzo, and V. Di Marzo, “Dysregulation of peripheral endocannabinoid levels in hyperglycemia and obesity: effect of high fat diets,” Molecular and Cellular Endocrinology, vol. 286, no. 1-2, pp. S66–S78, 2008. View at Publisher · View at Google Scholar · View at Scopus
  149. I. Matias, A. V. Vergoni, S. Petrosino et al., “Regulation of hypothalamic endocannabinoid levels by neuropeptides and hormones involved in food intake and metabolism: insulin and melanocortins,” Neuropharmacology, vol. 54, no. 1, pp. 206–212, 2008. View at Publisher · View at Google Scholar · View at Scopus
  150. V. Di Marzo, “The endocannabinoid system in obesity and type 2 diabetes,” Diabetologia, vol. 51, no. 8, pp. 1356–1367, 2008. View at Publisher · View at Google Scholar · View at Scopus
  151. M. Blüher, S. Engeli, N. Klöting et al., “Dysregulation of the peripheral and adipose tissue endocannabinoid system in human abdominal obesity,” Diabetes, vol. 55, no. 11, pp. 3053–3060, 2006. View at Publisher · View at Google Scholar · View at Scopus
  152. M. Côté, I. Matias, I. Lemieux et al., “Circulating endocannabinoid levels, abdominal adiposity and related cardiometabolic risk factors in obese men,” International Journal of Obesity, vol. 31, no. 4, pp. 692–699, 2007. View at Publisher · View at Google Scholar · View at Scopus
  153. V. Di Marzo, M. Côté, I. Matias et al., “Changes in plasma endocannabinoid levels in viscerally obese men following a 1 year lifestyle modification programme and waist circumference reduction: associations with changes in metabolic risk factors,” Diabetologia, vol. 52, no. 2, pp. 213–217, 2009. View at Publisher · View at Google Scholar · View at Scopus
  154. V. Di Marzo, A. Verrijken, A. Hakkarainen et al., “Role of insulin as a negative regulator of plasma endocannabinoid levels in obese and nonobese subjects,” European Journal of Endocrinology, vol. 161, no. 5, pp. 715–722, 2009. View at Publisher · View at Google Scholar · View at Scopus
  155. A. Schäfer, J. Pfrang, J. Neumüller, S. Fiedler, G. Ertl, and J. Bauersachs, “The cannabinoid receptor-1 antagonist rimonabant inhibits platelet activation and reduces pro-inflammatory chemokines and leukocytes in Zucker rats,” British Journal of Pharmacology, vol. 154, no. 5, pp. 1047–1054, 2008. View at Publisher · View at Google Scholar · View at Scopus
  156. J. Meijerink, P. Plastina, J. Vincken et al., “The ethanolamide metabolite of DHA, docosahexaenoylethanolamine, shows immunomodulating effects in mouse peritoneal and RAW264.7 macrophages: evidence for a new link between fish oil and inflammation,” British Journal of Nutrition, vol. 105, no. 12, pp. 1798–1807, 2011. View at Publisher · View at Google Scholar · View at Scopus
  157. T. L. Blasbalg, J. R. Hibbeln, C. E. Ramsden, S. F. Majchrzak, and R. R. Rawlings, “Changes in consumption of omega-3 and omega-6 fatty acids in the United States during the 20th century,” American Journal of Clinical Nutrition, vol. 93, no. 5, pp. 950–962, 2011. View at Publisher · View at Google Scholar · View at Scopus
  158. A. R. Alvheim, M. K. Malde, D. Osei-Hyiaman et al., “Dietary linoleic acid elevates endogenous 2-AG and anandamide and induces obesity,” Obesity, vol. 20, no. 10, pp. 1984–1994, 2012.
  159. S. Banni and V. di Marzo, “Effect of dietary fat on endocannabinoids and related mediators: consequences on energy homeostasis, inflammation and mood,” Molecular Nutrition and Food Research, vol. 54, no. 1, pp. 82–92, 2010. View at Publisher · View at Google Scholar · View at Scopus
  160. S. Petrosino, T. Iuvone, and V. Di Marzo, “N-palmitoyl-ethanolamine: biochemistry and new therapeutic opportunities,” Biochimie, vol. 92, no. 6, pp. 724–727, 2010. View at Publisher · View at Google Scholar · View at Scopus
  161. P. Magee, S. Pearson, and J. Allen, “The omega-3 fatty acid, eicosapentaenoic acid (EPA), prevents the damaging effects of tumour necrosis factor (TNF)-alpha during murine skeletal muscle cell differentiation,” Lipids in Health and Disease, vol. 7, article 24, 2008. View at Publisher · View at Google Scholar · View at Scopus
  162. A. A. Izzo, F. Piscitelli, R. Capasso et al., “Basal and fasting/refeeding-regulated tissue levels of endogenous PPAR-α ligands in zucker rats,” Obesity, vol. 18, no. 1, pp. 55–62, 2010. View at Publisher · View at Google Scholar · View at Scopus
  163. B. Lutz, “Endocannabinoid signals in the control of emotion,” Current Opinion in Pharmacology, vol. 9, no. 1, pp. 46–52, 2009. View at Publisher · View at Google Scholar · View at Scopus
  164. A. Berger, G. Crozier, T. Bisogno, P. Cavaliere, S. Innis, and V. Di Marzo, “Anandamide and diet: inclusion of dietary arachidonate and docosahexaenoate leads to increased brain levels of the corresponding N-acylethanolamines in piglets,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 11, pp. 6402–6406, 2001. View at Publisher · View at Google Scholar · View at Scopus
  165. V. Di Marzo, M. Griinari, G. Carta et al., “Dietary krill oil increases docosahexaenoic acid and reduces 2-arachidonoylglycerol but not N-acylethanolamine levels in the brain of obese Zucker rats,” International Dairy Journal, vol. 20, no. 4, pp. 231–235, 2010. View at Publisher · View at Google Scholar · View at Scopus
  166. G. Schmitz and J. Ecker, “The opposing effects of n-3 and n-6 fatty acids,” Progress in Lipid Research, vol. 47, no. 2, pp. 147–155, 2008. View at Publisher · View at Google Scholar · View at Scopus
  167. P. C. Calder, “n-3 Polyunsaturated fatty acids, inflammation, and inflammatory diseases,” American Journal of Clinical Nutrition, vol. 83, pp. 1505S–1519S, 2006.
  168. V. Di Marzo, S. K. Goparaju, L. Wang et al., “Leptin-regulated endocannabinoids are involved in maintaining food intake,” Nature, vol. 410, no. 6830, pp. 822–825, 2001. View at Publisher · View at Google Scholar · View at Scopus
  169. J. A. Harrold, J. C. Elliott, P. J. King, P. S. Widdowson, and G. Williams, “Down-regulation of cannabinoid-1 (CB-1) receptors in specific extrahypothalamic regions of rats with dietary obesity: a role for endogenous cannabinoids in driving appetite for palatable food?” Brain Research, vol. 952, no. 2, pp. 232–238, 2002. View at Publisher · View at Google Scholar · View at Scopus
  170. M. Maccarrone, E. Fride, T. Bisogno et al., “Up-regulation of the endocannabinoid system in the uterus of leptin knockout (ob/ob) mice and implications for fertility,” Molecular Human Reproduction, vol. 11, no. 1, pp. 21–28, 2005. View at Publisher · View at Google Scholar · View at Scopus
  171. G. Annuzzi, F. Piscitelli, L. Di Marino et al., “Differential alterations of the concentrations of endocannabinoids and related lipids in the subcutaneous adipose tissue of obese diabetic patients,” Lipids in Health and Disease, vol. 9, article 43, 2010. View at Publisher · View at Google Scholar · View at Scopus
  172. J. C. Sipe, T. M. Scott, S. Murray et al., “Biomarkers of endocannabinoid system activation in severe obesity,” PLoS ONE, vol. 5, no. 1, Article ID e8792, 2010. View at Publisher · View at Google Scholar · View at Scopus
  173. S. Engeli, J. Böhnke, M. Feldpausch et al., “Activation of the peripheral endocannabinoid system in human obesity,” Diabetes, vol. 54, no. 10, pp. 2838–2843, 2005. View at Publisher · View at Google Scholar · View at Scopus
  174. I. Matias, M. Gonthier, P. Orlando et al., “Regulation, function, and dysregulation of endocannabinoids in models of adipose and β-pancreatic cells and in obesity and hyperglycemia,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 8, pp. 3171–3180, 2006. View at Publisher · View at Google Scholar · View at Scopus
  175. C. M. Williams and T. C. Kirkham, “Anandamide induces overeating: mediation by central cannabinoid (CB1) receptors,” Psychopharmacology, vol. 143, no. 3, pp. 315–317, 1999. View at Publisher · View at Google Scholar · View at Scopus
  176. N. Jamshidi and D. A. Taylor, “Anandamide administration into the ventromedial hypothalamus stimulates appetite in rats,” British Journal of Pharmacology, vol. 134, no. 6, pp. 1151–1154, 2001. View at Scopus
  177. T. C. Kirkham, C. M. Williams, F. Fezza, and V. Di Marzo, “Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation: stimulation of eating by 2-arachidonoyl glycerol,” British Journal of Pharmacology, vol. 136, no. 4, pp. 550–557, 2002. View at Scopus
  178. D. Osei-Hyiaman, M. DePetrillo, P. Pacher et al., “Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity,” Journal of Clinical Investigation, vol. 115, no. 5, pp. 1298–1305, 2005. View at Publisher · View at Google Scholar · View at Scopus
  179. D. Cota, G. Marsicano, M. Tschöp et al., “The endogenous cennabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis,” Journal of Clinical Investigation, vol. 112, no. 3, pp. 423–431, 2003. View at Publisher · View at Google Scholar · View at Scopus
  180. V. Di Marzo and J. Després, “CB1 antagonists for obesitywhat lessons have we learned from rimonabant?” Nature Reviews Endocrinology, vol. 5, no. 11, pp. 633–638, 2009. View at Publisher · View at Google Scholar · View at Scopus
  181. F. A. Moreira, M. Grieb, and B. Lutz, “Central side-effects of therapies based on CB1 cannabinoid receptor agonists and antagonists: focus on anxiety and depression,” Best Practice and Research, vol. 23, no. 1, pp. 133–144, 2009. View at Publisher · View at Google Scholar · View at Scopus
  182. V. Kus, P. Flachs, O. Kuda et al., “Unmasking differential effects of rosiglitazone and pioglitazone in the combination treatment with n-3 fatty acids in mice fed a high-fat diet,” PLoS ONE, vol. 6, no. 11, Article ID e27126, 2011. View at Publisher · View at Google Scholar · View at Scopus
  183. S. Banni, G. Carta, E. Murru et al., “Krill oil significantly decreases 2-arachidonoylglycerol plasma levels in obese subjects,” Nutrition and Metabolism, vol. 8, no. 1, article 7, 2011. View at Publisher · View at Google Scholar · View at Scopus