About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 970265, 9 pages
http://dx.doi.org/10.1155/2013/970265
Research Article

Maternal Plasma miRNAs Expression in Preeclamptic Pregnancies

1Department of Obstetrics and Gynecology, Zhongda Hospital, Southeast University, Dingjiaqiao 87, Nanjing 210009, China
2State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Sipailou 2, Nanjing 210096, China

Received 8 May 2013; Accepted 23 July 2013

Academic Editor: Kyousuke Takeuchi

Copyright © 2013 Hailing Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. A. North, L. M. McCowan, G. A. Dekker et al., “Clinical risk prediction for pre-eclampsia in nulliparous women: development of model in international prospective cohort,” BMJ, vol. 342, no. 7803, Article ID d1875, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. L. Duley, “The global impact of pre-eclampsia and eclampsia,” Seminars in Perinatology, vol. 33, no. 3, pp. 130–137, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. C. W. Redman and I. L. Sargent, “Latest advances in understanding preeclampsia,” Science, vol. 308, no. 5728, pp. 1592–1594, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. M. J. Bueno, D. C. I. Perez, and M. Malumbres, “Control of cell proliferation pathways by microRNAs,” Cell Cycle, vol. 7, no. 20, pp. 3143–3148, 2008. View at Scopus
  5. J. Krützfeldt and M. Stoffel, “MicroRNAs: a new class of regulatory genes affecting metabolism,” Cell Metabolism, vol. 4, no. 1, pp. 9–12, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. B. P. Lewis, C. B. Burge, and D. P. Bartel, “Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets,” Cell, vol. 120, no. 1, pp. 15–20, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. B. M. Engels and G. Hutvagner, “Principles and effects of microRNA-mediated post-transcriptional gene regulation,” Oncogene, vol. 25, no. 46, pp. 6163–6169, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. D. P. Bartel, “MicroRNAs: genomics, biogenesis, mechanism, and function,” Cell, vol. 116, no. 2, pp. 281–297, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Shi and Y. Jin, “MicroRNA in cell differentiation and development,” Science in China C, vol. 52, no. 3, pp. 205–211, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Thum, D. Catalucci, and J. Bauersachs, “MicroRNAs: novel regulators in cardiac development and disease,” Cardiovascular Research, vol. 79, no. 4, pp. 562–570, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. I. Eisenberg, A. Eran, I. Nishino et al., “Distinctive patterns of microRNA expression in primary muscular disorders,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 43, pp. 17016–17021, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Huang, S. Yang, J. Zhang et al., “MicroRNAs as promising biomarkers for diagnosing human cancer,” Cancer Investigation, vol. 28, no. 6, pp. 670–671, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. D. M. M. Prieto and U. R. Markert, “MicroRNAs in pregnancy,” Journal of Reproductive Immunology, vol. 88, no. 2, pp. 106–111, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. B. L. Pineles, R. Romero, D. Montenegro et al., “Distinct subsets of microRNAs are expressed differentially in the human placentas of patients with preeclampsia,” American Journal of Obstetrics & Gynecology, vol. 196, no. 3, pp. 261.e1–261.e6, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. X. M. Zhu, T. Han, I. L. Sargent, G. W. Yin, and Y. Q. Yao, “Differential expression profile of microRNAs in human placentas from preeclamptic pregnancies vs normal pregnancies,” American Journal of Obstetrics & Gynecology, vol. 200, no. 6, pp. 661.e1–661.e7, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Hu, P. Li, S. Hao, L. Liu, J. Zhao, and Y. Hou, “Differential expression of microRNAs in the placentae of Chinese patients with severe pre-eclampsia,” Clinical Chemistry and Laboratory Medicine, vol. 47, no. 8, pp. 923–929, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Zen and C. Y. Zhang, “Circulating MicroRNAs: a novel class of biomarkers to diagnose and monitor human cancers,” Medicinal Research Reviews, vol. 32, no. 2, pp. 326–348, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. J. A. Weber, D. H. Baxter, S. Zhang et al., “The microRNA spectrum in 12 body fluids,” Clinical Chemistry, vol. 56, no. 11, pp. 1733–1741, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Wang, S. Zhang, J. Weber, D. Baxter, and D. J. Galas, “Export of microRNAs and microRNA-protective protein by mammalian cells,” Nucleic Acids Research, vol. 38, no. 20, pp. 7248–7259, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Zhao, J. Dong, T. Jiang et al., “Early second-trimester serum miRNA profiling predicts gestational diabetes mellitus,” PLoS ONE, vol. 6, no. 8, Article ID e23925, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. ACOG practice bulletin, “Diagnosis and management of preeclampsia and eclampsia,” Obstetrics & Gynecology, vol. 99, no. 33, pp. 159–167, 2002.
  22. D. A. Enquobahrie, D. F. Abetew, T. K. Sorensen, D. Willoughby, K. Chidambaram, and M. A. Williams, “Placental microRNA expression in pregnancies complicated by preeclampsia,” American Journal of Obstetrics & Gynecology, vol. 204, no. 2, pp. 178.e12–178.e21, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Chen, J. A. Gelfond, L. M. McManus, and P. K. Shireman, “Reproducibility of quantitative RT-PCR array in miRNA expression profiling and comparison with microarray analysis,” BMC Genomics, vol. 10, article 407, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. F. Sato, S. Tsuchiya, K. Terasawa, and G. Tsujimoto, “Intra-platform repeatability and inter-platform comparability of microRNA microarray technology,” PLoS ONE, vol. 4, no. 5, Article ID e5540, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. L. W. Lee, S. Zhang, A. Etheridge et al., “Complexity of the microRNA repertoire revealed by next-generation sequencing,” RNA, vol. 16, no. 11, pp. 2170–2180, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. S. S. Chim, T. K. Shing, E. C. Hung et al., “Detection and characterization of placental microRNAs in maternal plasma,” Clinical Chemistry, vol. 54, no. 3, pp. 482–490, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. N. Vitoratos, D. Hassiakos, and C. Iavazzo, “Molecular mechanisms of preeclampsia,” Journal of Pregnancy, vol. 2012, Article ID 298343, 5 pages, 2012. View at Publisher · View at Google Scholar
  28. X. Zhang, X. Wang, H. Zhu et al., “Synergistic effects of the GATA-4-mediated miR-144/451 cluster in protection against simulated ischemia/reperfusion-induced cardiomyocyte death,” Journal of Molecular and Cellular Cardiology, vol. 49, no. 5, pp. 841–850, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Chakrabarty, S. Tranguch, T. Daikoku, K. Jensen, H. Furneaux, and S. K. Dey, “MicroRNA regulation of cyclooxygenase-2 during embryo implantation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 38, pp. 15144–15149, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Bolli, K. Shinmura, X. L. Tang et al., “Discovery of a new function of cyclooxygenase (COX)-2: COX-2 is a cardioprotective protein that alleviates ischemia/reperfusion injury and mediates the late phase of preconditioning,” Cardiovascular Research, vol. 55, no. 3, pp. 506–519, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. K. N. Papanicolaou, J. M. Streicher, T. O. Ishikawa, H. Herschman, Y. Wang, and K. Walsh, “Preserved heart function and maintained response to cardiac stresses in a genetic model of cardiomyocyte-targeted deficiency of cyclooxygenase-2,” Journal of Molecular and Cellular Cardiology, vol. 49, no. 2, pp. 196–209, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Poliseno, A. Tuccoli, L. Mariani et al., “MicroRNAs modulate the angiogenic properties of HUVECs,” Blood, vol. 108, no. 9, pp. 3068–3071, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Suárez, C. Fernández-Hernando, J. S. Pober, and W. C. Sessa, “Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells,” Circulation Research, vol. 100, no. 8, pp. 1164–1173, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. N. Felli, L. Fontana, E. Pelosi et al., “MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 50, pp. 18081–18086, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. S. M. Sladek, R. R. Magness, and K. P. Conrad, “Nitric oxide and pregnancy,” American Journal of Physiology, vol. 272, no. 2, pp. R441–R463, 1997. View at Scopus
  36. S. Kassab, M. T. Miller, R. Hester, J. Novak, and J. P. Granger, “Systemic hemodynamics and regional blood flow during chronic nitric oxide synthesis inhibition in pregnant rats,” Hypertension, vol. 31, no. 1, pp. 315–320, 1998. View at Scopus
  37. A. J. Kriegel, Y. Liu, Y. Fang, X. Ding, and M. Liang, “The miR-29 family: genomics, cell biology, and relevance to renal and cardiovascular injury,” Physiological Genomics, vol. 44, no. 4, pp. 237–244, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Zhang, L. Wu, Y. Wang et al., “Protective role of estrogen-induced miRNA-29 expression in carbon tetrachloride-induced mouse liver injury,” The Journal of Biological Chemistry, vol. 287, no. 18, pp. 14851–14862, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. M. K. Muniyappa, P. Dowling, M. Henry et al., “MiRNA-29a regulates the expression of numerous proteins and reduces the invasiveness and proliferation of human carcinoma cell lines,” European Journal of Cancer, vol. 45, no. 17, pp. 3104–3118, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. U. Santanam, N. Zanesi, A. Efanov et al., “Chronic lymphocytic leukemia modeled in mouse by targeted miR-29 expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 27, pp. 12210–12215, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. C. Han, C. Y. Park, G. Bhagat et al., “MicroRNA-29a induces aberrant self-renewal capacity in hematopoietic progenitors, biased myeloid development, and acute myeloid leukemia,” Journal of Experimental Medicine, vol. 207, no. 3, pp. 475–489, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Roderburg, G. W. Urban, K. Bettermann et al., “Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis,” Hepatology, vol. 53, no. 1, pp. 209–218, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. L. Kong, J. Zhu, W. Han et al., “Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study,” Acta Diabetologica, vol. 48, no. 1, pp. 61–69, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Shioya, S. Obayashi, H. Tabunoki et al., “Aberrant microRNA expression in the brains of neurodegenerative diseases: MiR-29a decreased in Alzheimer disease brains targets neurone navigator 3,” Neuropathology and Applied Neurobiology, vol. 36, no. 4, pp. 320–330, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. O. M. Reslan and R. A. Khalil, “Molecular and vascular targets in the pathogenesis and management of the hypertension associated with preeclampsia,” Cardiovascular and Hematological Agents in Medicinal Chemistry, vol. 8, no. 4, pp. 204–226, 2010. View at Publisher · View at Google Scholar · View at Scopus