About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 976816, 11 pages
http://dx.doi.org/10.1155/2013/976816
Research Article

The Human Cell Surfaceome of Breast Tumors

1Ludwig Institute for Cancer Research, São Paulo 01308-050, SP, Brazil
2Center for Applied Toxinology, Butantan Institute, São Paulo 05503-900, SP, Brazil
3Centro de Oncologia Molecular Hospital Sírio-Libanês, São Paulo 01308-050, SP, Brazil
4Instituto de Bioinformática e Biotecnologia, Natal 59064-560, RN, Brazil
5Fluidigm Inc., South San Francisco 94080, CA, USA
6Hospital AC Camargo, São Paulo 01509, SP, Brazil
7Ludwig Institute for Cancer Research, New York 10017, NY, USA
8Brain Institute, Federal University of Rio Grande do Norte, Natal 59064-560, RN, Brazil

Received 21 March 2013; Accepted 22 July 2013

Academic Editor: Lubna Nasir

Copyright © 2013 Júlia Pinheiro Chagas da Cunha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Jemal, R. Siegel, E. Ward et al., “Cancer statistics, 2008,” CA: A Cancer Journal for Clinicians, vol. 58, no. 2, pp. 71–96, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. C. M. Perou, T. Sørile, M. B. Eisen et al., “Molecular portraits of human breast tumours,” Nature, vol. 406, no. 6797, pp. 747–752, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. L. Harris, H. Fritsche, R. Mennel et al., “American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer,” Journal of Clinical Oncology, vol. 25, no. 33, pp. 5287–5312, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. L. J. van't Veer, H. Dai, M. J. van de Vijver et al., “Gene expression profiling predicts clinical outcome of breast cancer,” Nature, vol. 415, no. 6871, pp. 530–536, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. J. P. C. da Cunha, P. A. F. Galante, J. E. de Souza et al., “Bioinformatics construction of the human cell surfaceome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 39, pp. 16752–16757, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. W. Xia, R. J. Mullin, B. R. Keith et al., “Anti-tumor activity of GW572016: a dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways,” Oncogene, vol. 21, no. 41, pp. 6255–6263, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. H. X. Chen, R. E. Gore-Langton, and B. D. Cheson, “Clinical trials referral resource: current clinical trials of the anti-VEGF monoclonal antibody bevacizumab,” Oncology, vol. 15, no. 8, pp. 1017–1026, 2001. View at Scopus
  8. D. J. Slamon, G. M. Clark, S. G. Wong, W. J. Levin, A. Ullrich, and W. L. McGuire, “Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene,” Science, vol. 235, no. 4785, pp. 182–191, 1987. View at Scopus
  9. M. A. Owens, B. C. Horten, and M. M. Da Silva, “HER2 amplification ratios by fluorescence in situ hybridization and correlation with immunohistochemistry in a cohort of 6556 breast cancer tissues,” Clinical Breast Cancer, vol. 5, no. 1, pp. 63–69, 2004. View at Scopus
  10. T. Sjöblom, S. Jones, L. D. Wood et al., “The consensus coding sequences of human breast and colorectal cancers,” Science, vol. 314, no. 5797, pp. 268–274, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. L. D. Wood, D. W. Parsons, S. Jones et al., “The genomic landscapes of human breast and colorectal cancers,” Science, vol. 318, no. 5853, pp. 1108–1113, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. R. J. Leary, J. C. Lin, J. Cummins et al., “Integrated analysis of homozygous deletions, focal amplifications, and sequence alterations in breast and colorectal cancers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 42, pp. 16224–16229, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. A. C. Stamps, S. C. Davies, J. Burman, and M. J. O'Hare, “Analysis of proviral integration in human mammary epithelial cell lines immortalized by retroviral infection with a temperature-sensitive SV40 T- antigen construct,” International Journal of Cancer, vol. 57, no. 6, pp. 865–874, 1994. View at Publisher · View at Google Scholar · View at Scopus
  14. K. J. Livak and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method,” Methods, vol. 25, no. 4, pp. 402–408, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Singh, L. Young, D. J. Handelsman, and Q. Dong, “Molecular cloning and characterization of a novel androgen repressible gene expressed in the prostate epithelium,” Gene, vol. 348, no. 1-2, pp. 55–63, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. K. A. Egland, X. F. Liu, S. Squires et al., “High expression of a cytokeratin-associated protein in many cancers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 15, pp. 5929–5934, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. A. W. Eckert, M. H. W. Lautner, H. Taubert, J. Schubert, and U. Bilkenroth, “Expression of Glut-1 is a prognostic marker for oral squamous cell carcinoma patients,” Oncology Reports, vol. 20, no. 6, pp. 1381–1385, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Ozcan, S. S. Shen, Q. Zhai, and L. D. Truong, “Expression of GLUT1 in primary renal tumors: morphologic and biologic implications,” American Journal of Clinical Pathology, vol. 128, no. 2, pp. 245–254, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Tsukioka, Y. Matsumoto, M. Noriyuki et al., “Expression of glucose transporters in epithelial ovarian carcinoma: correlation with clinical characteristics and tumor angiogenesis,” Oncology Reports, vol. 18, no. 2, pp. 361–367, 2007. View at Scopus
  20. R. S. Haber, A. Rathan, K. R. Weiser et al., “GLUT1 glucose transporter expression in colorectal carcinoma: a marker for poor prognosis,” Cancer, vol. 83, pp. 34–40, 1998.
  21. R. S. Haber, K. R. Weiser, A. Pritsker, I. Reder, and D. E. Burstein, “Glut1 glucose transporter expression in benign and malignant thyroid nodules,” Thyroid, vol. 7, no. 3, pp. 363–667, 1997. View at Scopus
  22. W. K. Youn, Y.-K. Park, Y. Y. Tae, and M. L. Sang, “Expression of the GLUT1 glucose transporter in gallbladder carcinomas,” Hepato-Gastroenterology, vol. 49, no. 46, pp. 907–911, 2002. View at Scopus
  23. P. W. Dempsey, S. E. Doyle, J. Q. He, and G. Cheng, “The signaling adaptors and pathways activated by TNF superfamily,” Cytokine and Growth Factor Reviews, vol. 14, no. 3-4, pp. 193–209, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Rudchenko, M. Scanlan, G. Kalantarov et al., “A human monoclonal autoantibody to breast cancer identifies the PDZ domain containing protein GIPC1 as a novel breast cancer-associated antigen,” BMC Cancer, vol. 8, article 248, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Kirikoshi and M. Katoh, “Expression of human GIPC1 in normal tissues, cancer cell lines, and primary tumors,” International Journal of Molecular Medicine, vol. 9, no. 5, pp. 509–513, 2002. View at Scopus
  26. K. Lambaerts, S. A. Wilcox-Adelman, and P. Zimmermann, “The signaling mechanisms of syndecan heparan sulfate proteoglycans,” Current Opinion in Cell Biology, vol. 21, no. 5, pp. 662–669, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Orend, W. Huang, M. A. Olayioye, N. E. Hynes, and R. Chiquet-Ehrismann, “Tenascin-C blocks cell-cycle progression of anchorage-dependent fibroblasts on fibronectin through inhibition of syndecan-4,” Oncogene, vol. 22, no. 25, pp. 3917–3926, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. B. T. MacDonald, K. Tamai, and X. He, “Wnt/β-catenin signaling: components, mechanisms, and diseases,” Developmental Cell, vol. 17, no. 1, pp. 9–26, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. D. V. Rozanov, A. Y. Savinov, R. Williams et al., “Molecular signature of MT1-MMP: transactivation of the downstream universal gene network in cancer,” Cancer Research, vol. 68, no. 11, pp. 4086–4096, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Tsunezuka, H. Kinoh, T. Takino et al., “Expression of membrane-type matrix metalloproteinase 1 (MT1-MMP) in tumor cells enhances pulmonary metastasis in an experimental metastasis assay,” Cancer Research, vol. 56, no. 24, pp. 5678–5683, 1996. View at Scopus
  31. T.-H. Chun, F. Sabeh, I. Ota et al., “MT1-MMP-dependent neovessel formation within the confines of the three-dimensional extracellular matrix,” Journal of Cell Biology, vol. 167, no. 4, pp. 757–767, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Sato, T. Kinoshita, T. Takino, K. Nakayama, and M. Seiki, “Activation of a recombinant membrane type 1-matrix metalloproteinase (MT1-MMP) by furin and its interaction with tissue inhibitor of metalloproteinases (TIMP)-2,” FEBS Letters, vol. 393, no. 1, pp. 101–104, 1996. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Holmbeck, P. Bianco, J. Caterina et al., “MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover,” Cell, vol. 99, no. 1, pp. 81–92, 1999. View at Publisher · View at Google Scholar · View at Scopus
  34. L. Devy, L. Huang, L. Naa et al., “Selective inhibition of matrix metalloproteinase-14 blocks tumor growth, invasion, and angiogenesis,” Cancer Research, vol. 69, no. 4, pp. 1517–1526, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. R. J. Leary, J. C. Lin, J. Cummins et al., “Integrated analysis of homozygous deletions, focal amplifications, and sequence alterations in breast and colorectal cancers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 42, pp. 16224–16229, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Katoh and M. Katoh, “MGC9753 gene, located within PPP1R1B-STARD3-ERBB2-GRB7 amplicon on human chromosome 17q12, encodes the seven-transmembrane receptor with extracellular six-cystein domain,” International Journal of Oncology, vol. 22, no. 6, pp. 1369–1374, 2003. View at Scopus
  37. A. L. Willis, N. L. Tran, J. M. Chatigny et al., “The fibroblast growth factor-inducible 14 receptor is highly expressed in HER2-positive breast tumors and regulates breast cancer cell invasive capacity,” Molecular Cancer Research, vol. 6, no. 5, pp. 725–734, 2008. View at Publisher · View at Google Scholar · View at Scopus