About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 986273, 9 pages
http://dx.doi.org/10.1155/2013/986273
Research Article

Antibacterial Activity of Defensin PaDef from Avocado Fruit (Persea americana var. drymifolia) Expressed in Endothelial Cells against Escherichia coli and Staphylococcus aureus

1Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, 58893 Morelia, MICH, Mexico
2Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Ciudad Universitaria, Edificio B1, 58030 Morelia, MICH, Mexico
3Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130 Col. Chuburná de Hidalgo, 97200 Mérida, YUC, Mexico

Received 2 November 2012; Accepted 4 September 2013

Academic Editor: Lalji Singh

Copyright © 2013 Jaquelina Julia Guzmán-Rodríguez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Antimicrobial therapy is a useful tool to control infectious diseases in general and rising antibiotic resistant microorganisms in particular. Alternative strategies are desirable, and antimicrobial peptides (AMP) represent attractive control agents. Mexican avocado (Persea americana var. drymifolia) is used in traditional medicine; however, the AMP production has not been reported in this plant. We obtained a cDNA library from avocado fruit and clone PaDef was identified, which has a cDNA (249 bp) encoding a protein (78 aa) homologous with plant defensins (>80%). We expressed the defensin PaDef cDNA (pBME3) in the bovine endothelial cell line BVE-E6E7. Polyclonal and clonal populations were obtained and their activity was evaluated against Escherichia coli, Staphylococcus aureus, and Candida albicans. E. coli viability was inhibited with 100 μg/mL of total protein from clones (>55%). Also, S. aureus viability was inhibited from 50 μg/mL total protein (27–38%) but was more evident at 100 μg/mL (52–65%). This inhibition was higher than the effect showed by polyclonal population (~23%). Finally, we did not detect activity against C. albicans. These results are the first report that shows antimicrobial activity of a defensin produced by avocado and suggest that this AMP could be used in the control of pathogens.