About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2014 (2014), Article ID 141396, 10 pages
http://dx.doi.org/10.1155/2014/141396
Research Article

Effects of Stress and MDMA on Hippocampal Gene Expression

1James Winkle College of Pharmacy, University of Cincinnati, 3225 Eden Avenue, Cincinnati, OH 45267, USA
2Department of Neurosciences, University of Toledo School of Medicine, Toledo, OH 43606, USA

Received 18 April 2013; Revised 18 September 2013; Accepted 10 October 2013; Published 9 January 2014

Academic Editor: Anton M. Jetten

Copyright © 2014 Georg F. Weber et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Check, “The ups and downs of ecstasy,” Nature, vol. 429, no. 6988, pp. 126–128, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. M. C. Mithoefer, M. T. Wagner, A. T. Mithoefer et al., “Durability of improvement in post-traumatic stress disorder symptoms and absence of harmful effects or drug dependency after 3, 4-methylenedioxymethamphetamine-assisted psychotherapy: a prospective long-term follow-up study,” Journal of Psychopharmacology, vol. 27, pp. 28–39, 2013.
  3. A. J. Eisch and D. Petrik, “Depression and hippocampal neurogenesis: a road to remission?” Science, vol. 338, pp. 72–75, 2012.
  4. Q. Liu, J. Yu, Q.-L. Mao-Ying et al., “Repeated clomipramine treatment reversed the inhibition of cell proliferation in adult hippocampus induced by chronic unpredictable stress,” Pharmacogenomics Journal, vol. 8, no. 6, pp. 375–383, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. B. S. McEwen, “The ever-changing brain: cellular and molecular mechanisms for the effects of stressful experiences,” Developmental Neurobiology, vol. 72, pp. 878–890, 2012.
  6. R. M. Sapolsky, “A mechanism for glucocorticoid toxicity in the hippocampus: Increased neuronal vulnerability to metabolic insults,” The Journal of Neuroscience, vol. 5, no. 5, pp. 1228–1232, 1985. View at Scopus
  7. B. Stein-Behrens, M. P. Mattson, I. Chang, M. Yeh, and R. Sapolsky, “Stress exacerbates neuron loss and cytoskeletal pathology in the hippocampus,” The Journal of Neuroscience, vol. 14, no. 9, pp. 5373–5380, 1994. View at Scopus
  8. A. R. Green, A. O. Mechan, J. M. Elliott, E. O'Shea, and M. I. Colado, “The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”),” Pharmacological Reviews, vol. 55, no. 3, pp. 463–508, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. G. A. Gudelsky and B. K. Yamamoto, “Neuropharmacology and neurotoxicity of 3,4-methylenedioxymethamphetamine,” Methods in molecular medicine, vol. 79, pp. 55–73, 2003. View at Scopus
  10. S. J. Kish, J. Lerch, Y. Furukawa et al., “Decreased cerebral cortical serotonin transporter binding in ecstasy users: a positron emission tomography/[11C]DASB and structural brain imaging study,” Brain, vol. 133, no. 6, pp. 1779–1797, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. U. D. McCann, V. Eligulashvili, and G. A. Ricaurte, “(±)3,4-Methylenedioxymethamphetamine (“ecstasy”)-induced serotonin neurotoxicity: clinical studies,” Neuropsychobiology, vol. 42, no. 1, pp. 11–16, 2000. View at Scopus
  12. T. Xie, L. Tong, M. W. McLane et al., “Loss of serotonin transporter protein after MDMA and other ring-substituted amphetamines,” Neuropsychopharmacology, vol. 31, no. 12, pp. 2639–2651, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. B. N. Johnson and B. K. Yamamoto, “Chronic unpredictable stress augments +3,4-methylenedioxymethamphetamine-induced monoamine depletions: the role of corticosterone,” Neuroscience, vol. 159, no. 4, pp. 1233–1243, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Kermanian, M. Mehdizadeh, M. Soleimani et al., “The role of adenosine receptor agonist and antagonist on hippocampal MDMA detrimental effects, a structural and behavioral study,” Metabolic Brain Disease, vol. 27, pp. 459–469, 2012.
  15. I. Riezzo, D. Cerretani, C. Fiore et al., “Enzymatic-nonenzymatic cellular antioxidant defense systems response and immunohistochemical detection of MDMA, VMAT2, HSP70, and apoptosis as biomarkers for MDMA (ecstasy) neurotoxicity,” Journal of Neuroscience Research, vol. 88, no. 4, pp. 905–916, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Salzmann, C. Canestrelli, F. Noble, and C. Marie-Claire, “Analysis of transcriptional responses in the mouse dorsal striatum following acute 3,4-methylenedioxymethamphetamine (ecstasy): Identification of extracellular signal-regulated kinase-controlled genes,” Neuroscience, vol. 137, no. 2, pp. 473–482, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. M. W. Warren, S. F. Larner, F. H. Kobeissy et al., “Calpain and caspase proteolytic markers co-localize with rat cortical neurons after exposure to methamphetamine and MDMA,” Acta Neuropathologica, vol. 114, no. 3, pp. 277–286, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. J. H. Anneken, J. I. Cunningham, S. A. Collins, B. K. Yamamoto, and G. A. Gudelsky, “MDMA increases glutamate release and reduces parvalbumin-positive GABAergic cells in the dorsal hippocampus of the rat: role of cyclooxygenase,” Journal of NeuroImmune Pharmacology, vol. 8, pp. 58–65, 2013.
  19. S. A. Perrine, F. Ghoddoussi, M. S. Michaels, E. M. Hyde, D. M. Kuhn, and M. P. Galloway, “MDMA administration decreases serotonin but not N-acetylaspartate in the rat brain,” NeuroToxicology, vol. 31, no. 6, pp. 654–661, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. R. P. Kesner, “A behavioral analysis of dentate gyrus function,” Progress in Brain Research, vol. 163, pp. 567–576, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. J. A. Able, G. A. Gudelsky, C. V. Vorhees, and M. T. Williams, “3,4-methylenedioxymethamphetamine in adult rats produces deficits in path integration and spatial reference memory,” Biological Psychiatry, vol. 59, no. 12, pp. 1219–1226, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. J. I. Cunningham, J. Raudensky, J. Tonkiss, and B. K. Yamamoto, “MDMA pretreatment leads to mild chronic unpredictable stress-induced impairments in spatial learning,” Behavioral Neuroscience, vol. 123, no. 5, pp. 1076–1084, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. J. E. Sprague, A. S. Preston, M. Leifheit, and B. Woodside, “Hippocampal serotonergic damage induced by MDMA (ecstasy): effects on spatial learning,” Physiology and Behavior, vol. 79, no. 2, pp. 281–287, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. C. V. Vorhees, T. M. Reed, M. R. Skelton, and M. T. Williams, “Exposure to 3,4-methylenedioxymethamphetamine (MDMA) on postnatal days 11-20 induces reference but not working memory deficits in the Morris water maze in rats: implications of prior learning,” International Journal of Developmental Neuroscience, vol. 22, no. 5-6, pp. 247–259, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. M. M. W. Straiko, G. A. Gudelsky, and L. M. Coolen, “Treatment with a serotonin-depleting regimen of MDMA prevents conditioned place preference to sex in male rats,” Behavioral Neuroscience, vol. 121, no. 3, pp. 586–593, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. K. I. Bolla, U. D. McCann, and G. A. Ricaurte, “Memory impairment in abstinent MDMA (“Ecstasy”) users,” Neurology, vol. 51, no. 6, pp. 1532–1537, 1998. View at Scopus
  27. M. J. Morgan, “Ecstasy (MDMA): a review of its possible persistent psychological effects,” Psychopharmacology, vol. 152, no. 3, pp. 230–248, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. N. A. Von Geusau, P. Stalenhoef, M. Huizinga, J. Snel, and K. R. Ridderinkhof, “Impaired executive function in male MDMA (“ecstasy”) users,” Psychopharmacology, vol. 175, no. 3, pp. 331–341, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Wareing, J. E. Fisk, and P. N. Murphy, “Working memory deficits in current and previous users of MDMA (“ecstasy”),” British Journal of Psychology, vol. 91, part 2, pp. 181–188, 2000. View at Scopus
  30. B. N. Johnson and B. K. Yamamoto, “Chronic stress enhances the corticosterone response and neurotoxicity to +3,4-methylenedioxymethamphetamine (MDMA): the role of ambient temperature,” Journal of Pharmacology and Experimental Therapeutics, vol. 335, no. 1, pp. 180–189, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. G. K. Smyth, “Linear models and empirical bayes methods for assessing differential expression in microarray experiments,” Statistical Applications in Genetics and Molecular Biology, vol. 3, no. 1, article 3, 2004. View at Scopus
  32. A. Kauffmann, R. Gentleman, and W. Huber, “arrayQualityMetrics—a bioconductor package for quality assessment of microarray data,” Bioinformatics, vol. 25, no. 3, pp. 415–416, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. M. A. Sartor, C. R. Tomlinson, S. C. Wesselkamper, S. Sivaganesan, G. D. Leikauf, and M. Medvedovic, “Intensity-based hierarchical Bayes method improves testing for differentially expressed genes in microarray experiments,” BMC Bioinformatics, vol. 7, article 538, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. K.-S. Kim and P.-L. Han, “Optimization of chronic stress paradigms using anxiety- and depression-like behavioral parameters,” Journal of Neuroscience Research, vol. 83, no. 3, pp. 497–507, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Orsetti, F. Di Brisco, P. L. Canonico, A. A. Genazzani, and P. Ghi, “Gene regulation in the frontal cortex of rats exposed to the chronic mild stress paradigm, an animal model of human depression,” European Journal of Neuroscience, vol. 27, no. 8, pp. 2156–2164, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. I. Sillaber, M. Panhuysen, M. S. H. Henniger et al., “Profiling of behavioral changes and hippocampal gene expression in mice chronically treated with the SSRI paroxetine,” Psychopharmacology, vol. 200, no. 4, pp. 557–572, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. Q. Wei, E. K. Hebda-Bauer, A. Pletsch et al., “Overexpressing the glucocorticoid receptor in forebrain causes an aging-like neuroendocrine phenotype and mild cognitive dysfunction,” The Journal of Neuroscience, vol. 27, no. 33, pp. 8836–8844, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. M. L. Laudenslager, C. Noonan, C. Jacobsen et al., “Salivary cortisol among American Indians with and without posttraumatic stress disorder (PTSD): gender and alcohol influences,” Brain, Behavior, and Immunity, vol. 23, no. 5, pp. 658–662, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. T. A. Mellman, D. D. Brown, E. S. Jenifer, M. M. S. Hipolito, and O. S. Randall, “Posttraumatic stress disorder and nocturnal blood pressure dipping in young adult african americans,” Psychosomatic Medicine, vol. 71, no. 6, pp. 627–630, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. C. S. Ulmer, P. S. Calhoun, J. D. Edinger, H. R. Wagner, and J. C. Beckham, “Sleep disturbance and baroreceptor sensitivity in women with post-traumatic stress disorder,” Journal of Traumatic Stress, vol. 22, no. 6, pp. 643–647, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. R. P. Allen, U. D. McCann, and G. A. Ricaurte, “Persistent effects of (±)3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) on human sleep,” Sleep, vol. 16, no. 6, pp. 560–564, 1993. View at Scopus
  42. H. Kerbage and S. Richa, “Non-antidepressant long-term treatment in post-traumatic stress disorder (PTSD),” Current Clinical Pharmacology. In press.
  43. P. Johansen and T. S. Krebs, “How could MDMA (ecstasy) help anxiety disorders? A neurobiological rationale,” Journal of Psychopharmacology, vol. 23, no. 4, pp. 389–391, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. B. T. Callahan, B. J. Cord, and G. A. Ricaurte, “Long-term impairment of anterograde axonal transport along fiber projections originating in the rostral raphe nuclei after treatment with fenfluramine or methylenedioxymethamphetamine,” Synapse, vol. 40, no. 2, pp. 113–121, 2001. View at Publisher · View at Google Scholar · View at Scopus
  45. C. Ádori, R. D. Andó, G. G. Kovács, and G. Bagdy, “Damage of serotonergic axons and immunolocalization of Hsp27, Hsp72, and Hsp90 molecular chaperones after a single dose of MDMA administration in dark agouti rat: temporal, spatial, and cellular patterns,” Journal of Comparative Neurology, vol. 497, no. 2, pp. 251–269, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. I. Escobedo, I. Peraile, L. Orio, M. I. Colado, and E. O'Shea, “Evidence for a role of Hsp70 in the neuroprotection induced by heat shock pre-treatment against 3,4-methylenedioxymethamphetamine toxicity in rat brain,” Journal of Neurochemistry, vol. 101, no. 5, pp. 1272–1283, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. H. S. Sharma and S. F. Ali, “Acute administration of 3,4-methylenedioxymethamphetamine induces profound hyperthermia, blood-brain barrier disruption, brain edema formation, and cell injury: an experimental study in rats and mice using biochemical and morphologic approaches,” Annals of the New York Academy of Sciences, vol. 1139, pp. 242–258, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. N. Thiriet, B. Ladenheim, M. T. McCoy, and J. L. Cadet, “Analysis of ecstasy (MDMA)-induced transcriptional responses in the rat cortex,” FASEB Journal, vol. 16, no. 14, pp. 1887–1894, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Shankaran and G. A. Gudelsky, “Effect of 3,4-methylenedioxymethamphetamine (MDMA) on hippocampal dopamine and serotonin,” Pharmacology Biochemistry and Behavior, vol. 61, no. 4, pp. 361–366, 1998. View at Publisher · View at Google Scholar · View at Scopus