About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2014 (2014), Article ID 145243, 14 pages
http://dx.doi.org/10.1155/2014/145243
Research Article

Integration of High-Volume Molecular and Imaging Data for Composite Biomarker Discovery in the Study of Melanoma

1Department of Computer Science and Biomedical Informatics, University of Thessaly, Papasiopoulou 2-4, 35100 Lamia, Greece
2Department of Digital Systems, University of Piraeus, Grigoriou Lampraki 126, 18532 Piraeus, Greece
3Metabolic Engineering and Bioinformatics Programme, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vasileos Constantinou Avenue, 11635 Athens, Greece

Received 29 April 2013; Revised 28 September 2013; Accepted 12 October 2013; Published 16 January 2014

Academic Editor: Hesham H. Ali

Copyright © 2014 Konstantinos Moutselos et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. W. Fenner, B. Brook, G. Clapworthy et al., “The EuroPhysiome, STEP and a roadmap for the virtual physiological human,” Philosophical Transactions of the Royal Society A, vol. 366, no. 1878, pp. 2979–2999, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Rohlfing, A. Pfefferbaum, E. V. Sullivan, and C. R. Maurer, “Information fusion in biomedical image analysis: combination of data vs. combination of interpretations,” Information Processing in Medical Imaging, vol. 19, pp. 150–161, 2005. View at Scopus
  3. R. Haapanen and S. Tuominen, “Data combination and feature selection for multi-source forest inventory,” Photogrammetric Engineering and Remote Sensing, vol. 74, no. 7, pp. 869–880, 2008. View at Scopus
  4. J. L. Jesneck, L. W. Nolte, J. A. Baker, C. E. Floyd, and J. Y. Lo, “Optimized approach to decision fusion of heterogeneous data for breast cancer diagnosis,” Medical Physics, vol. 33, no. 8, pp. 2945–2954, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Lee, S. Doyle, J. Monaco et al., “A knowledge representation framework for integration, classification of multi-scale imaging and non-imaging data: preliminary results in predicting prostate cancer recurrence by fusing mass spectrometry and histology,” in Proceedings of the 6th IEEE International Conference on Symposium on Biomedical Imaging: From Nano to Macro (ISBI '09), pp. 77–80, Boston, Mass, USA, July 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Tiwari, S. Viswanath, G. Lee, and A. Madabhushi, “Multi-modal data fusion schemes for integrated classification of imaging and non-imaging biomedical data,” in Proceedings of the 8th IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI '11), pp. 165–168, April 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Hinrichs, V. Singh, G. Xu, and S. C. Johnson, “Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population,” NeuroImage, vol. 55, no. 2, pp. 574–589, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. K. R. Gray, P. Aljabar, R. A. Heckemann, A. Hammers, and D. Rueckert, “Random forest-based similarity measures for multi-modal classification of Alzheimer's disease,” NeuroImage, vol. 65, pp. 167–175, 2013.
  9. A. Golugula, G. Lee, S. R. Master et al., “Supervised regularized canonical correlation analysis: integrating histologic and proteomic measurements for predicting biochemical recurrence following prostate surgery,” BMC Bioinformatics, vol. 12, article 483, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Balázs, S. Ecsedi, L. Vízkeleti, and A. Bégány, “Genomics of human malignant melanoma,” in Breakthroughs in Melanoma Research, Y. Tanaka, Ed., InTech, 2011.
  11. J. Tímár, B. Gyorffy, and E. Rásó, “Gene signature of the metastatic potential of cutaneous melanoma: too much for too little?” Clinical and Experimental Metastasis, vol. 27, no. 6, pp. 371–387, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. W. K. Martins, G. H. Esteves, O. M. Almeida et al., “Gene network analyses point to the importance of human tissue kallikreins in melanoma progression,” BMC Medical Genomics, vol. 4, article 76, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Ogorzałek, L. Nowak, G. Surówka, and A. Alekseenko, “Modern techniques for computer-aided melanoma diagnosis,” in Melanoma in the Clinic—Diagnosis, Management and Complications of Malignancy, M. Murph, Ed., InTech, 2011.
  14. I. Maglogiannis and C. N. Doukas, “Overview of advanced computer vision systems for skin lesions characterization,” IEEE Transactions on Information Technology in Biomedicine, vol. 13, no. 5, pp. 721–733, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Saeys, I. Inza, and P. Larrañaga, “A review of feature selection techniques in bioinformatics,” Bioinformatics, vol. 23, no. 19, pp. 2507–2517, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Sun, A. K. C. Wong, and M. S. Kamel, “Classification of imbalanced data: a review,” International Journal of Pattern Recognition and Artificial Intelligence, vol. 23, no. 4, pp. 687–719, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Liaw and M. Wiener, “Classification and regression by randomForest,” R News, vol. 2, no. 3, pp. 18–22, 2002.
  19. C. Chen, A. Liaw, and L. Breiman, “Using random forest to learn imbalanced data,” 2004, http://stat-reports.lib.berkeley.edu/accessPages/666.html.
  20. W. N. Venables and B. D. Ripley, Modern Applied Statistics with S, Springer, New York, NY, USA, 2002.
  21. Z. Díaz, M. J. Segovia, J. Fernández, and E. M. d. Pozo, “Machine learning and statistical techniques. An application to the prediction of insolvency in spanish non-life insurance companies,” The International Journal of Digital Accounting Research, vol. 5, no. 6, pp. 1–45, 2005.
  22. R. Development_Core_Team, “R: a language and environment for statistical computing,” http://www.R-project.org.
  23. M. Maragoudakis and I. Maglogiannis, “Skin lesion diagnosis from images using novel ensemble classification techniques,” in Proceedings of the 10th IEEE EMBS International Conference on Information Technology Applications in Biomedicine, Corfu, Greece, November 2010.
  24. T. Barrett, D. B. Troup, S. E. Wilhite et al., “NCBI GEO: archive for functional genomics data sets-10 years on,” Nucleic Acids Research, vol. 39, no. 1, pp. D1005–D1010, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Talantov, A. Mazumder, J. X. Yu et al., “Novel genes associated with malignant melanoma but not benign melanocytic lesions,” Clinical Cancer Research, vol. 11, no. 20, pp. 7234–7242, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Sean and P. S. Meltzer, “GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor,” Bioinformatics, vol. 23, no. 14, pp. 1846–1847, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. G. K. Smyth, “Limma: linear models for microarray data,” in Bioinformatics and Computational Biology Solutions Using R and Bioconductor, pp. 397–420, Springer, New York, NY, USA, 2005.
  28. R. C. Gentleman, V. J. Carey, D. M. Bates et al., “Bioconductor: open software development for computational biology and bioinformatics,” Genome Biology, vol. 5, no. 10, p. R80, 2004. View at Scopus
  29. NCBI_GEO, “GEO2R,” http://www.ncbi.nlm.nih.gov/geo/info/geo2r.html.
  30. N. J. Horton and K. P. Kleinman, “Much ado about nothing: a comparison of missing data methods and software to fit incomplete data regression models,” American Statistician, vol. 61, no. 1, pp. 79–90, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Wickham, “The split-apply-combine strategy for data analysis,” Journal of Statistical Software, vol. 40, no. 1, pp. 1–29, 2011. View at Scopus
  32. M. Kuhn, S. Weston, A. Williams, C. Keefer, and A. Engelhardt, “Caret: classification and regression training,” 2012, http://CRAN.R-project.org/package=caret.
  33. T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition Letters, vol. 27, no. 8, pp. 861–874, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. Z. He and W. Yu, “Stable feature selection for biomarker discovery,” Computational Biology and Chemistry, vol. 34, no. 4, pp. 215–225, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. L. Breiman, “Manual on setting up, using, and understanding random forests v3. 1,” 2002, http://oz.berkeley.edu/users/breiman/Using_random_forests_V3.1.pdf.
  36. N. Galili, R. J. Davis, W. J. Fredericks et al., “Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma,” Nature Genetics, vol. 5, no. 3, pp. 230–235, 1993. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Roiniotis, P. Masendycz, S. Ho, and G. M. Scholz, “Domain-mediated dimerization of the Hsp90 cochaperones Harc and Cdc37,” Biochemistry, vol. 44, no. 17, pp. 6662–6669, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. R. M. Wenham, B. Calingaert, S. Ali et al., “Matrix metalloproteinase-1 gene promoter polymorphism and risk of ovarian cancer,” Journal of the Society for Gynecologic Investigation, vol. 10, no. 6, pp. 381–387, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Kobayashi, K. Takamatsu, M. Fujishiro, S. Saitoh, and T. Noguchi, “Molecular cloning of a novel calcium-binding protein structurally related to hippocalcin from human brain and chromosomal mapping of its gene,” Biochimica et Biophysica Acta, vol. 1222, no. 3, pp. 515–518, 1994. View at Publisher · View at Google Scholar · View at Scopus