About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2014 (2014), Article ID 213570, 7 pages
http://dx.doi.org/10.1155/2014/213570
Review Article

High-Throughput Analysis of Ovarian Granulosa Cell Transcriptome

Third Chair of Surgery, Collegium Medicum, Jagiellonian University, Pradnicka 35-37, 31-202 Cracow, Poland

Received 17 November 2013; Revised 30 December 2013; Accepted 2 January 2014; Published 10 March 2014

Academic Editor: Irma Virant-Klun

Copyright © 2014 Ewa Chronowska. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Gougeon, “Human ovarian follicular development: from activation of resting follicles to preovulatory maturation,” Annales d'Endocrinologie, vol. 71, no. 3, pp. 132–143, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. G. A. Palma, M. E. Argañaraz, A. D. Barrera, D. Rodler, Mutto AÁ, and F. Sinowatz, “Biology and biotechnology of follicle development,” The Scientific World Journal, vol. 2012, Article ID 938138, 14 pages, 2012. View at Publisher · View at Google Scholar
  3. E. Seli, C. Robert, and M.-A. Sirard, “Omics in assisted reproduction: possibilities and pitfalls,” Molecular Human Reproduction, vol. 16, no. 8, pp. 513–530, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Assou, D. Haouzi, J. de Vos, and S. Hamamah, “Human cumulus cells as biomarkers for embryo and pregnancy outcomes,” Molecular Human Reproduction, vol. 16, no. 8, pp. 531–538, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. P. R. Nambiar, R. R. Gupta, and V. Misra, “An “Omics” based survey of human colon cancer,” Mutation Research, vol. 693, no. 1-2, pp. 3–18, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Bonnet, C. Bevilacqua, F. Benne et al., “Transcriptome profiling of sheep granulosa cells and oocytes during early follicular development obtained by Laser Capture Microdissection,” BMC Genomics, vol. 12, article 417, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Hasegawa, K. Kumamoto, N. Mochida, S. Komori, and K. Koyama, “Gene expression profile during ovarian folliculogenesis,” Journal of Reproductive Immunology, vol. 83, no. 1-2, pp. 40–44, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Batista, D. Vaiman, J. Dausset, M. Fellous, and R. A. Veitia, “Potential targets of FOXL2, a transcription factor involved in craniofacial and follicular development, identified by transcriptomics,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 9, pp. 3330–3335, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Kawamura, Y. Cheng, N. Kawamura et al., “Pre-ovulatory LH/hCG surge decreases C-type natriuretic peptide secretion by ovarian granulosa cells to promote meiotic resumption of pre-ovulatory oocytes,” Human Reproduction, vol. 26, no. 11, pp. 3094–3101, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Bonnet, K. A. Lê Cao, M. SanCristobal et al., “In vivo gene expression in granulosa cells during pig terminal follicular development,” Reproduction, vol. 136, no. 2, pp. 211–224, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. A. K. Binder, K. F. Rodriguez, K. J. Hamilton, P. S. Stockton, C. E. Reed, and K. S. Korach, “The absence of ER-β, results in altered gene expression in ovarian granulosa cells isolated from in vivo preovulatory follicles,” Endocrinology, vol. 154, no. 6, pp. 2174–2187, 2013.
  12. G. Vigone, V. Merico, A. Prigione et al., “Transcriptome based identification of mouse cumulus cell markers that predict the developmental competence of their enclosed antral oocytes,” BMC Genomics, vol. 14, article 380, 2013.
  13. J.-Y. Jiang, H. Xiong, M. Cao, X. Xia, M.-A. Sirard, and B. K. Tsang, “Mural granulosa cell gene expression associated with oocyte developmental competence,” Journal of Ovarian Research, vol. 3, no. 1, article 6, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Bettegowda, O. V. Patel, K.-B. Lee et al., “Identification of novel bovine cumulus cell molecular markers predictive of oocyte competence: functional and diagnostic implications,” Biology of Reproduction, vol. 79, no. 2, pp. 301–309, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Assidi, I. Dufort, A. Ali et al., “Identification of potential markers of oocyte competence expressed in bovine cumulus cells matured with follicle-stimulating hormone and/or phorbol myristate acetate in vitro,” Biology of Reproduction, vol. 79, no. 2, pp. 209–222, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Hamel, I. Dufort, C. Robert et al., “Identification of differentially expressed markers in human follicular cells associated with competent oocytes,” Human Reproduction, vol. 23, no. 5, pp. 1118–1127, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Feuerstein, V. Puard, C. Chevalier et al., “Genomic assessment of human cumulus cell marker genes as predictors of oocyte developmental competence: impact of various experimental factors,” PLoS One, vol. 7, no. 7, article e40449, 2012.
  18. S. Assou, D. Haouzi, K. Mahmoud et al., “A non-invasive test for assessing embryo potential by gene expression profiles of human cumulus cells: a proof of concept study,” Molecular Human Reproduction, vol. 14, no. 12, pp. 711–719, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Assou, D. Haouzi, H. Dechaud, A. Gala, A. Ferrières, and S. Hamamah, “Comparative gene expression profiling in human cumulus cells according to ovarian gonadotropin treatments,” BioMed Research International, vol. 2013, Article ID 354582, 13 pages, 2013. View at Publisher · View at Google Scholar
  20. S. N. Schauer, S. D. Sontakke, E. D. Watson, C. L. Esteves, and F. X. Donadeu, “Involvement of miRNAs in equine follicle development,” Reproduction, vol. 146, no. 3, pp. 273–282, 2013.
  21. A. Velthut-Meikas, J. Simm, T. Tuuri, J. S. Tapanainen, M. Metsis, and A. Salumets, “Research resource: small RNA-seq of human granulosa cells reveals miRNAs in FSHR and aromatase genes,” Molecular Endocrinology, vol. 27, no. 7, pp. 1128–1141, 2013.
  22. Z. G. Ouandaogo, D. Haouzi, S. Assou et al., “Human cumulus cells molecular signature in relation to oocyte nuclear maturity stage,” PLoS ONE, vol. 6, no. 11, article e27179, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. Z. G. Ouandaogo, N. Frydman, L. Hesters et al., “Differences in transcriptomic profiles of human cumulus cells isolated from oocytes at GV, MI and MII stages after in vivo and in vitro oocyte maturation,” Human Reproduction, vol. 27, no. 8, pp. 2438–2447, 2012.
  24. K. L. Kind, K. M. Banwell, K. M. Gebhardt et al., “Microarray analysis of mRNA from cumulus cells following in vivo or in vitro maturation of mouse cumulus-oocyte complexes,” Reproduction, Fertility and Development, vol. 25, no. 2, pp. 426–438, 2013.
  25. D. Haouzi, S. Assou, K. Mahmoud et al., “LH/hCGR gene expression in human cumulus cells is linked to the expression of the extracellular matrix modifying gene TNFAIP6 and to serum estradiol levels on day of hCG administration,” Human Reproduction, vol. 24, no. 11, pp. 2868–2878, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. A. E. Iager, A. M. Kocabas, H. H. Otu, et al., “Identification of a novel gene set in human cumulus cells predictive of an oocyte's pregnancy potential,” Fertility and Sterility, vol. 99, no. 3, pp. 745–752, 2013.
  27. T. B. Papler, E. V. Bokal, K. F. Tacer, P. Juvan, I. V. Klun, and R. Devjak, “Differences in cumulus cells gene expression between modified natural and stimulated in vitro fertilization cycles,” Journal of Assisted Reproduction and Genetics, 2013. View at Publisher · View at Google Scholar