About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2014 (2014), Article ID 238532, 12 pages
http://dx.doi.org/10.1155/2014/238532
Research Article

Strain Diversity of Mycobacterium tuberculosis Isolates from Pulmonary Tuberculosis Patients in Afar Pastoral Region of Ethiopia

1Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
2Section for International Health, Department of Community Medicine, Institute for Health and Society, University of Oslo, P.O. Box 1130, Blindern, 0318 Oslo, Norway
3WHO Supranational TB Reference Laboratory, TB & Mycobacteria Unit, Institut Pasteur de la Guadeloupe, 97183 Abymes, France

Received 24 November 2013; Accepted 22 January 2014; Published 6 March 2014

Academic Editor: Tomasz Jagielski

Copyright © 2014 Mulugeta Belay et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Bleed, C. Dye, and M. C. Raviglione, “Dynamics and control of the global tuberculosis epidemic,” Current Opinion in Pulmonary Medicine, vol. 6, no. 3, pp. 174–179, 2000. View at Scopus
  2. T. R. Frieden, T. R. Sterling, S. S. Munsiff, C. J. Watt, and C. Dye, “Tuberculosis,” The Lancet, vol. 362, no. 9387, pp. 887–899, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. WHO, Global Tuberculosis Report, WHO, Geneva, Switzerland, 2012.
  4. Federal Ministry of Health, Guidelines For Clinical and Programmatic Management of TB, Leprosy and TB/HIV in Ethiopia, Federal Ministry of Health, Addis Ababa, Ethiopia, 12th edition, 2012.
  5. Z. Alebachew, “Ethiopian National TB Prevalence survey 2010–2011: Preliminary Result,” http://www.who.int/tb/advisory_bodies/impact_measurement_taskforce/meetings/lille_oct11_ethiopia.pdf.
  6. C. Dye and B. G. Williams, “The population dynamics and control of tuberculosis,” Science, vol. 328, no. 5980, pp. 856–861, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Tessema, J. Beer, M. Merker, et al., “Molecular epidemiology and transmission dynamics of Mycobacterium tuberculosis in Northwest Ethiopia: new phylogenetic lineages found in Northwest Ethiopia,” BMC Infectious Diseases, vol. 13, article 131, 2013.
  8. A. Mihret, Y. Bekele, A. G. Loxton, et al., “Diversity of Mycobacterium tuberculosis isolates from new pulmonary tuberculosis cases in Addis Ababa, Ethiopia,” Tuberculosis Research and Treatment, vol. 2012, Article ID 892079, 7 pages, 2012. View at Publisher · View at Google Scholar
  9. L. Garedew, A. Mihret, G. Mamo, et al., “Strain diversity of mycobacteria isolated from pulmonary tuberculosis patients at Debre Birhan Hospital, Ethiopia,” International Journal of Tuberculosis and Lung Disease, vol. 17, no. 8, pp. 1076–1081, 2013.
  10. A. Deribew, G. Abebe, L. Apers et al., “Prevalence of pulmonary TB and spoligotype pattern of Mycobacterium tuberculosis among TB suspects in a rural community in Southwest Ethiopia,” BMC Infectious Diseases, vol. 12, article 54, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Agonafir, E. Lemma, D. Wolde-Meskel et al., “Phenotypic and genotypic analysis of multidrug-resistant tuberculosis in Ethiopia,” International Journal of Tuberculosis and Lung Disease, vol. 14, no. 10, pp. 1259–1265, 2010. View at Scopus
  12. G. Mamo, F. Abebe, Y. Worku et al., “Tuberculosis in goats and sheep in afar pastoral region of ethiopia and isolation of Mycobacterium tuberculosis from goat,” Veterinary Medicine International, vol. 2012, Article ID 869146, 8 pages, 2012. View at Publisher · View at Google Scholar
  13. G. Mamo, G. Bayleyegn, T. S. Tessema et al., “Pathology of camel tuberculosis and molecular characterization of its causative agents in pastoral regions of Ethiopia,” PLoS ONE, vol. 6, no. 1, Article ID e15862, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Belay, G. Bjune, G. Ameni, M. Abebe, and F. Abebe, “Serodiagnostic performance of rESAT-6-CFP-10 in the diagnosis of pulmonary tuberculosis in Ethiopia,” Mycobacterial Diseases, vol. 1, no. 2, article 103, 2011.
  15. Federal Ministry of Health, Tuberculosis, Leprosy and TB/HIV Prevention and Control Programme, Federal Ministry of Health, Addis Ababa, Ethiopia, 4th edition, 2008.
  16. HAPCO, Guidelines for HIV Counselling and Testing in Ethiopia, HAPCO, Addis Ababa, Ethiopia, 2007.
  17. WHO, Laboratory Services in Tuberculosis Control: Culture. Part III, WHO, Geneva, Switzerland, 1998.
  18. J. Kamerbeek, L. Schouls, A. Kolk et al., “Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology,” Journal of Clinical Microbiology, vol. 35, no. 4, pp. 907–914, 1997. View at Scopus
  19. C. Demay, B. Liens, T. Burguière et al., “SITVITWEB—a publicly available international multimarker database for studying Mycobacterium tuberculosis genetic diversity and molecular epidemiology,” Infection, Genetics and Evolution, vol. 12, no. 4, pp. 755–766, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. F. Koro Koro, Y. Kamdem Simo, F. F. Piam, et al., “Population dynamics of tuberculous Bacilli in Cameroon as assessed by spoligotyping,” Journal of Clinical Microbiology, vol. 51, no. 1, pp. 299–302, 2013.
  21. O. Kisa, G. Tarhan, S. Gunal et al., “Distribution of spoligotyping defined genotypic lineages among drug-resistant Mycobacterium tuberculosis complex clinical isolates in Ankara, Turkey,” PLoS ONE, vol. 7, no. 1, Article ID e30331, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. J. F. Reyes, A. R. Francis, and M. M. Tanaka, “Models of deletion for visualizing bacterial variation: an application to tuberculosis spoligotypes,” BMC Bioinformatics, vol. 9, article 496, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Tang, J. F. Reyes, F. Luciani, A. R. Francis, and M. M. Tanaka, “spolTools: online utilities for analyzing spoligotypes of the Mycobacterium tuberculosis complex,” Bioinformatics, vol. 24, no. 20, pp. 2414–2415, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. J. G. E. Ellson, E. Koutsofios, S. C. North, and G. Woodhull, “Graphviz and Dynagraph—Static and Dynamic Graph Drawing Tools,” 2002, http://www.graphviz.org/Documentation/EGKNW03.pdf.
  25. R. Firdessa, S. Berg, E. Hailu, et al., “Mycobacterial lineages causing pulmonary and extrapulmonary tuberculosis,” Emerging Infectious Diseases, vol. 19, no. 3, pp. 460–463, 2013.
  26. B. Gumi, E. Schelling, S. Berg et al., “Zoonotic transmission of tuberculosis between pastoralists and their livestock in south-east Ethiopia,” EcoHealth, vol. 9, no. 2, pp. 139–149, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Kidane, J. O. Olobo, A. Habte et al., “Identification of the causative organism of tuberculous lymphadenitis in Ethiopia by PCR,” Journal of Clinical Microbiology, vol. 40, no. 11, pp. 4230–4234, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Kebede, Z. Alebachew, F. Tsegaye, et al., “Background document 6: The First Ethiopian National Population-based TB Prevalence Survey,” http://www.who.int/tb/advisory_bodies/impact_measurement_taskforce/meetings/tf5doc06_keyresultsprevalencesurveyethiopia2010.pdf.
  29. M. Belay, G. Bjune, G. Ameni, and F. Abebe, “Diagnostic and treatment delay among Tuberculosis patients in Afar Region, Ethiopia: a cross-sectional study,” BMC Public Health, vol. 12, article 369, 2012.
  30. S. Godreuil, F. Renaud, M. Choisy et al., “Highly structured genetic diversity of the Mycobacterium tuberculosis population in Djibouti,” Clinical Microbiology and Infection, vol. 16, no. 7, pp. 1023–1026, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. G. M Cristina, S. Brisse, R. Brosch et al., “Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis,” PLoS Pathogens, vol. 1, no. 1, article e5, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. I. Comas, M. Coscolla, T. Luo et al., “Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans,” Nat Genet, vol. 45, no. 10, pp. 1176–1182, 2013.
  33. Z. H. Helal, M. S. E.-D. Ashour, S. A. Eissa et al., “Unexpectedly high proportion of ancestral manu genotype Mycobacterium tuberculosis strains cultured from tuberculosis patients in Egypt,” Journal of Clinical Microbiology, vol. 47, no. 9, pp. 2794–2801, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Blouin, Y. Hauck, C. Soler, et al., “Significance of the identification in the horn of Africa of an exceptionally deep branching Mycobacterium tuberculosis clade,” PLoS ONE, vol. 7, no. 12, Article ID e52841, 2012.
  35. P. Supply, S. Lesjean, E. Savine, K. Kremer, D. van Soolingen, and C. Locht, “Automated high-throughput genotyping for study of global epidemiology of Mycobacterium tuberculosis based on mycobacterial interspersed repetitive units,” Journal of Clinical Microbiology, vol. 39, no. 10, pp. 3563–3571, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Supply, C. Allix, S. Lesjean et al., “Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis,” Journal of Clinical Microbiology, vol. 44, no. 12, pp. 4498–4510, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Sola, I. Filliol, E. Legrand et al., “Genotyping of the Mycobacterium tuberculosis complex using MIRUs: association with VNTR and spoligotyping for molecular epidemiology and evolutionary genetics,” Infection, Genetics and Evolution, vol. 3, no. 2, pp. 125–133, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. L. C. O. Lazzarini, J. Rosenfeld, R. C. Huard et al., “Mycobacterium tuberculosis spoligotypes that may derive from mixed strain infections are revealed by a novel computational approach,” Infection, Genetics and Evolution, vol. 12, no. 4, pp. 798–806, 2012. View at Publisher · View at Google Scholar · View at Scopus