About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2014 (2014), Article ID 249810, 10 pages
http://dx.doi.org/10.1155/2014/249810
Review Article

Molecular Mechanisms of Renal Cellular Nephrotoxicity due to Radiocontrast Media

1Department of Health Sciences, Nephrology Unit, “Magna Graecia” University, I-88100 Catanzaro, Italy
2Department of Nephrology, “Federico II” University, I-80131 Naples, Italy
3IRCCS Centro Neurolesi “Bonino Pulejo”, I-98124 Messina, Italy
4Department of Drug Sciences and Health Products, University of Messina, I-98168 Messina, Italy

Received 18 October 2013; Revised 9 December 2013; Accepted 24 December 2013; Published 18 March 2014

Academic Editor: Elizabeth N. Pearce

Copyright © 2014 Ashour Michael et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Nash, A. Hafeez, and S. Hou, “Hospital-acquired renal insufficiency,” American Journal of Kidney Diseases, vol. 39, no. 5, pp. 930–936, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. T. G. Gleeson and S. Bulugahapitiya, “Contrast-induced nephropathy,” American Journal of Roentgenology, vol. 183, no. 6, pp. 1673–1689, 2004. View at Scopus
  3. S. N. Heyman, M. Brezis, F. H. Epstein, K. Spokes, P. Silva, and S. Rosen, “Early renal medullary hypoxic injury from radiocontrast and indomethacin,” Kidney International, vol. 40, no. 4, pp. 632–642, 1991. View at Scopus
  4. H. D. Humes, D. A. Hunt, and M. D. White, “Direct toxic effect of the radiocontrast agent diatrizoate on renal proximal tubule cells,” American Journal of Physiology—Renal Fluid and Electrolyte Physiology, vol. 252, no. 2, pp. F246–F255, 1987. View at Scopus
  5. V. H. Wallingford, H. G. Decker, and M. Kruty, “X-ray contrast media. I. Iodinated acylaminobenzoic acids,” Journal of the American Chemical Society, vol. 74, no. 17, pp. 4365–4372, 1952. View at Scopus
  6. R. W. Katzberg, “Urography into the 21st century: new contrast media, renal handling, imaging characteristics, and nephrotoxicity,” Radiology, vol. 204, no. 2, pp. 297–312, 1997. View at Scopus
  7. S. K. Morcos, “Contrast-induced nephropathy: are there differences between low osmolar and iso-osmolar iodinated contrast media?” Clinical Radiology, vol. 64, no. 5, pp. 468–472, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. M. M. Sendeski, “Pathophysiology of renal tissue damage by iodinated contrast media,” Clinical and Experimental Pharmacology and Physiology, vol. 38, no. 5, pp. 292–299, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. R. A. Zager, A. C. M. Johnson, and S. Y. Hanson, “Radiographic contrast media-induced tubular injury: evaluation of oxidant stress and plasma membrane integrity,” Kidney International, vol. 64, no. 1, pp. 128–139, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Romano, C. Briguori, C. Quintavalle et al., “Contrast agents and renal cell apoptosis,” European Heart Journal, vol. 29, no. 20, pp. 2569–2576, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Laerum, “Acute damage to human endothelial cells by brief exposure to contrast media in vitro,” Radiology, vol. 147, no. 3, pp. 681–684, 1983. View at Scopus
  12. K.-J. Andersen, E. I. Christensen, and H. Vik, “Effects of iodinated x-ray contrast media on renal epithelial cells in culture,” Investigative Radiology, vol. 29, no. 11, pp. 955–962, 1994. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Dascalu and A. Peer, “Effects of radiologic contrast media on human endothelial and kidney cell lines: intracellular pH and cytotoxicity,” Academic Radiology, vol. 1, no. 2, pp. 145–150, 1994. View at Scopus
  14. K. J. Andersen, H. Vik, H. P. Eikesdal, and E. I. Christensen, “Effects of contrast media on renal epithelial cells in culture,” Acta Radiologica. Supplementum, vol. 399, pp. 213–218, 1995. View at Scopus
  15. M. Potier, I. Lagroye, B. Lakhdar, J. Cambar, and J. Idee, “Comparative cytotoxicity of low- and high-osmolar contrast media to human fibroblasts and rat mesangial cells in culture,” Investigative Radiology, vol. 32, no. 10, pp. 621–626, 1997. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Haller, C. S. Schick, M. Zorn, and W. Kübier, “Cytotoxicity of radiocontrast agents on polarized renal epithelial cell monolayers,” Cardiovascular Research, vol. 33, no. 3, pp. 655–665, 1997. View at Publisher · View at Google Scholar · View at Scopus
  17. I. Hizóh, J. Sträter, C. S. Schick, W. Kübier, and C. Haller, “Radiocontrast-induced DNA fragmentation of renal tubular cells in vitro: role of hypertonicity,” Nephrology Dialysis Transplantation, vol. 13, no. 4, pp. 911–918, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Hardiek, R. E. Katholi, V. Ramkumar, and C. Deitrick, “Proximal tubule cell response to radiographic contrast media,” American Journal of Physiology—Renal Physiology, vol. 280, no. 1, pp. F61–F70, 2001. View at Scopus
  19. N. F. Fanning, B. J. Manning, J. Buckley, and H. P. Redmond, “Iodinated contrast media induce neutrophil apoptosis through a mitochondrial and caspase mediated pathway,” British Journal of Radiology, vol. 75, no. 899, pp. 861–873, 2002. View at Scopus
  20. I. Hizoh and C. Haller, “Radiocontrast-induced renal tubular cell apoptosis: hypertonic versus oxidative stress,” Investigative Radiology, vol. 37, no. 8, pp. 428–434, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Yano, Y. Itoh, T. Sendo, T. Kubota, and R. Oishi, “Cyclic AMP reverses radiocontrast media-induced apoptosis in LLC-PK1 cells by activating a kinase/PI3 kinase,” Kidney International, vol. 64, no. 6, pp. 2052–2063, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Ribeiro, F. de Assunção e Silva, R. S. Kurihara, N. Schor, and E. M. S. Higa, “Evaluation of the nitric oxide production in rat renal artery smooth muscle cells culture exposed to radiocontrast agents,” Kidney International, vol. 65, no. 2, pp. 589–596, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. M. C. Heinrich, M. K. Kuhlmann, A. Grgic, M. Heckmann, B. Kramann, and M. Uder, “Cytotoxic effects of ionic high-osmolar, nonionic monomeric, and nonionic iso-osmolar dimeric iodinated contrast media on renal tubular cells in vitro,” Radiology, vol. 235, no. 3, pp. 843–849, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Andreucci, G. Fuiano, P. Presta et al., “Radiocontrast media cause dephosphorylation of Akt and downstream signaling targets in human renal proximal tubular cells,” Biochemical Pharmacology, vol. 72, no. 10, pp. 1334–1342, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Andreucci, G. Lucisano, T. Faga et al., “Differential activation of signaling pathways involved in cell death, survival and inflammation by radiocontrast media in human renal proximal tubular cells,” Toxicological Sciences, vol. 119, no. 2, pp. 408–416, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Andreucci, T. Faga, D. Russo, et al., “Differential activation of signaling pathways by low-osmolar and iso-osmolar radiocontrast agents in human renal tubular cells,” Journal of Cellular Biochemistry, vol. 115, no. 2, pp. 281–289, 2014.
  27. M. Heinrich, M. Scheer, M. Heckmann, W. Bautz, and M. Uder, “Reversibility and time-dependency of contrast medium induced inhibition of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) conversion in renal proximal tubular cells in vitro: comparison of a monomeric and a dimeric nonionic iodinated contrast medium,” Investigative Radiology, vol. 42, no. 11, pp. 732–738, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Yang, D. Yang, R. Jia, and G. Ding, “Selective inhibition of the reverse mode of Na(+)/Ca(2+) exchanger attenuates contrast-induced cell injury,” American Journal of Nephrology, vol. 37, pp. 264–273, 2013.
  29. L. C. Racusen, C. Monteil, A. Sgrignoli et al., “Cell lines with extended in vitro growth potential from human renal proximal tubule: characterization, response to inducers, and comparison with established cell lines,” Journal of Laboratory and Clinical Medicine, vol. 129, no. 3, pp. 318–329, 1997. View at Scopus
  30. M. J. Ryan, G. Johnson, J. Kirk, S. M. Fuerstenberg, R. A. Zager, and B. Torok-Storb, “HK-2: an immortalized proximal tubule epithelial cell line from normal adult human kidney,” Kidney International, vol. 45, no. 1, pp. 48–57, 1994. View at Scopus
  31. S. N. Heyman, S. Rosen, and C. Rosenberger, “Renal parenchymal hypoxia, hypoxia adaptation, and the pathogenesis of radiocontrast nephropathy,” Clinical Journal of the American Society of Nephrology, vol. 3, no. 1, pp. 288–296, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. M. M. Sendeski, A. B. Persson, Z. Z. Liu et al., “Iodinated contrast media cause endothelial damage leading to vasoconstriction of human and rat vasa recta,” American Journal of Physiology—Renal Physiology, vol. 303, pp. F1592–F1598, 2012.
  33. C. Li and R. M. Jackson, “Reactive species mechanisms of cellular hypoxia-reoxygenation injury,” American Journal of Physiology—Cell Physiology, vol. 282, no. 2, pp. C227–C241, 2002. View at Scopus
  34. M. P. Murphy, “How mitochondria produce reactive oxygen species,” Biochemical Journal, vol. 417, no. 1, pp. 1–13, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Sendeski, A. Patzak, T. L. Pallone, C. Cao, A. E. Persson, and P. B. Persson, “Iodixanol, constriction of medullary descending vasa recta, and risk for contrast medium-induced nephropathy,” Radiology, vol. 251, no. 3, pp. 697–704, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. G. Ozkan, S. Ulusoy, A. Orem et al., “Protective effect of the grape seed proanthocyanidin extract in a rat model of contrast-induced nephropathy,” Kidney and Blood Pressure Research, vol. 35, pp. 445–453, 2012.
  37. A. Pisani, M. Sabbatini, E. Riccio et al., “Effect of a recombinant manganese superoxide dismutase on prevention of contrast-induced acute kidney injury,” Clinical and Experimental Nephrology, 2013. View at Publisher · View at Google Scholar
  38. M. Tepel, M. van der Giet, C. Schwarzfeld, U. Laufer, D. Liermann, and W. Zidek, “Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine,” The New England Journal of Medicine, vol. 343, no. 3, pp. 180–184, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Fishbane, “N-acetylcysteine in the prevention of contrast-induced nephropathy,” Clinical Journal of the American Society of Nephrology, vol. 3, no. 1, pp. 281–287, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. ACT Investigators, “Acetylcysteine for prevention of renal outcomes in patients undergoing coronary and peripheral vascular angiography: main results from the randomized acetylcysteine for contrast-induced nephropathy trial (ACT),” Circulation, vol. 124, no. 11, pp. 1250–1259, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Kongkham, S. Sriwong, and A. Tasanarong, “Protective effect of alpha tocopherol on contrast-induced nephropathy in rats,” Nefrologia, vol. 33, pp. 116–123, 2013.
  42. M. Wasaki, J. Sugimoto, and K. Shirota, “Glucose alters the susceptibility of mesangial cells to contrast media,” Investigative Radiology, vol. 36, no. 7, pp. 355–362, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. S. N. Heyman, B. A. Clark, N. Kaiser et al., “Radiocontrast agents induce endothelin release in vivo and in vitro,” Journal of the American Society of Nephrology, vol. 3, no. 1, pp. 58–65, 1992. View at Scopus
  44. S. N. Heyman, B. A. Clark, L. Cantley et al., “Effects of ioversol versus iothalamate on endothelin release and radiocontrast nephropathy,” Investigative Radiology, vol. 28, no. 4, pp. 313–318, 1993. View at Scopus
  45. J.-M. Sung, G. H. F. Shu, J.-C. Tsai, and J.-J. Huang, “Radiocontrast media induced endothelin-1 mRNA expression and peptide release in porcine aortic endothelial cells,” Journal of the Formosan Medical Association, vol. 94, no. 3, pp. 77–86, 1995. View at Scopus
  46. M. Khamaisi, I. Raz, V. Shilo et al., “Diabetes and radiocontrast media increase endothelin converting enzyme-1 in the kidney,” Kidney International, vol. 74, no. 1, pp. 91–100, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Wang, T. Holcslaw, T. M. Bashore et al., “Exacerbation of radiocontrast nephrotoxicity by endothelin receptor antagonism,” Kidney International, vol. 57, no. 4, pp. 1675–1680, 2000. View at Publisher · View at Google Scholar · View at Scopus
  48. P. Liss, P.-O. Carlsson, A. Nygren, F. Palm, and P. Hansell, “ET-A receptor antagonist BQ123 prevents radiocontrast media-induced renal medullary hypoxia,” Acta Radiologica, vol. 44, no. 1, pp. 111–117, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. P. B. Hansen and J. Schnermann, “Vasoconstrictor and vasodilator effects of adenosine in the kidney,” American Journal of Physiology—Renal Physiology, vol. 285, no. 4, pp. F590–F599, 2003. View at Scopus
  50. C. M. Erley, S. H. Duda, S. Schlepckow et al., “Adenosine antagonist theophylline prevents the reduction of glomerular filtration rate after contrast media application,” Kidney International, vol. 45, no. 5, pp. 1425–1431, 1994. View at Scopus
  51. R. E. Katholi, G. J. Taylor, W. P. McCann et al., “Nephrotoxicity from contrast media: attenuation with theophylline,” Radiology, vol. 195, no. 1, pp. 17–22, 1995. View at Scopus
  52. P. C. Y. Wong, Z. Li, J. Guo, and A. Zhang, “Pathophysiology of contrast-induced nephropathy,” International Journal of Cardiology, vol. 158, pp. 186–192, 2012. View at Publisher · View at Google Scholar · View at Scopus
  53. C. Cao, A. Edwards, M. Sendeski et al., “Intrinsic nitric oxide and superoxide production regulates descending vasa recta contraction,” American Journal of Physiology—Renal Physiology, vol. 299, no. 5, pp. F1056–F1064, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. P. Pacher, J. S. Beckman, and L. Liaudet, “Nitric oxide and peroxynitrite in health and disease,” Physiological Reviews, vol. 87, no. 1, pp. 315–424, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Saito, Y. Itoh, T. Yano et al., “Roles of intracellular Ca(2+) and cyclic AMP in mast cell histamine release induced by radiographic contrast media,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 367, no. 4, pp. 364–371, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. T. Yano, Y. Itoh, T. Kubota, T. Sendo, and R. Oishi, “A prostacyclin analog beraprost sodium attenuates radiocontrast media-induced LLC-PK1 cells injury,” Kidney International, vol. 65, no. 5, pp. 1654–1663, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. T. Yano, Y. Itoh, T. Kubota et al., “A prostacyclin analog prevents radiocontrast nephropathy via phosphorylation of cyclic AMP response element binding protein,” The American Journal of Pathology, vol. 166, no. 5, pp. 1333–1342, 2005. View at Scopus
  58. L. R. Stow, M. E. Jacobs, C. S. Wingo, and B. D. Cain, “Endothelin-1 gene regulation,” The FASEB Journal, vol. 25, no. 1, pp. 16–28, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. H. N. Jabbour, K. J. Sales, S. C. Boddy, R. A. Anderson, and A. R. W. Williams, “A positive feedback loop that regulates cyclooxygenase-2 expression and prostaglandin F2α synthesis via the F-series-prostanoid receptor and extracellular signal-regulated kinase 1/2 signaling pathway,” Endocrinology, vol. 146, no. 11, pp. 4657–4664, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. T. Kobayashi, T. Matsumoto, and K. Kamata, “The PI3-K/Akt pathway: roles related to alterations in vasomotor responses in diabetic models,” Journal of Smooth Muscle Research, vol. 41, no. 6, pp. 283–302, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. Y. Itoh, T. Yano, T. Sendo et al., “Involvement of de novo ceramide synthesis in radiocontrast-induced renal tubular cell injury,” Kidney International, vol. 69, no. 2, pp. 288–297, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. Q. Liu and P. A. Hofmann, “Protein phosphatase 2A-mediated cross-talk between p38 MAPK and ERK in apoptosis of cardiac myocytes,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 286, no. 6, pp. H2204–H2212, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Andreucci, T. Faga, G. Lucisano et al., “Mycophenolic acid inhibits the phosphorylation of NF-κB and JNKs and causes a decrease in IL-8 release in H2O2-treated human renal proximal tubular cells,” Chemico-Biological Interactions, vol. 185, no. 3, pp. 253–262, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Andreucci, G. Fuiano, P. Presta et al., “Downregulation of cell survival signalling pathways and increased cell damage in hydrogen peroxide-treated human renal proximal tubular cells by alpha-erythropoietin,” Cell Proliferation, vol. 42, no. 4, pp. 554–561, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. D. Calay, D. Vind-Kezunovic, A. Frankart, S. Lambert, Y. Poumay, and R. Gniadecki, “Inhibition of akt signaling by exclusion from lipid rafts in normal and transformed epidermal keratinocytes,” Journal of Investigative Dermatology, vol. 130, no. 4, pp. 1136–1145, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. J. M. Kyriakis and J. Avruch, “Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update,” Physiological Reviews, vol. 92, no. 2, pp. 689–737, 2012. View at Publisher · View at Google Scholar · View at Scopus
  67. D. E. Nowak, B. Tian, M. Jamaluddin et al., “RelA Ser276 phosphorylation is required for activation of a subset of NF-κB-dependent genes by recruiting cyclin-dependent kinase 9/cyclin t1 complexes,” Molecular and Cellular Biology, vol. 28, no. 11, pp. 3623–3638, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. C. Quintavalle, M. Brenca, F. de Micco et al., “In vivo and in vitro assessment of pathways involved in contrast media-induced renal cells apoptosis,” Cell Death and Disease, vol. 2, no. 5, article e155, 2011. View at Publisher · View at Google Scholar · View at Scopus
  69. X. Xu, T. Wu, X. Ding, J. Zhu, J. Zou, and J. He, “The role of nuclear factor-κB in rats of radiocontrast-media-induced nephropathy,” Journal of Biochemical and Molecular Toxicology, vol. 22, no. 6, pp. 416–421, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. H. Lee, S. Sheu, H. Yen, W. Lai, and J. Chang, “JNK/ATF2 pathway is involved in iodinated contrast media-induced apoptosis,” American Journal of Nephrology, vol. 31, no. 2, pp. 125–133, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. X. Gong, G. Celsi, K. Carlsson, S. Norgren, and M. Chen, “N-acetylcysteine amide protects renal proximal tubular epithelial cells against iohexol-induced apoptosis by blocking p38 MAPK and iNOS signaling,” American Journal of Nephrology, vol. 31, no. 2, pp. 178–188, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. X. Gong, Q. Wang, X. Tang et al., “Tetramethylpyrazine prevents contrast-induced nephropathy by inhibiting p38 MAPK and FoxO1 signaling pathways,” American Journal of Nephrology, vol. 37, pp. 199–207, 2013.
  73. C. T. Wu, M. L. Sheu, K. S. Tsai, T. I. Weng, C. K. Chiang, and S. H. Liu, “The role of endoplasmic reticulum stress-related unfolded protein response in the radiocontrast medium-induced renal tubular cell injury,” Toxicological Sciences, vol. 114, no. 2, pp. 295–301, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. S. O. Moon, W. Kim, D. H. Kim et al., “Angiopoietin-1 reduces iopromide-induced endothelial cell apoptosis through activation of phosphatidylinositol 3′-kinase/P70 S6 kinase,” International Journal of Tissue Reactions, vol. 27, no. 3, pp. 115–124, 2005. View at Scopus
  75. Y. Yokomaku, T. Sugimoto, S. Kume et al., “Asialoerythropoietin prevents contrast-induced nephropathy,” Journal of the American Society of Nephrology, vol. 19, no. 2, pp. 321–328, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. A. I. Goodman, R. Olszanecki, L. M. Yang et al., “Heme oxygenase-1 protects against radiocontrast-induced acute kidney injury by regulating anti-apoptotic proteins,” Kidney International, vol. 72, no. 8, pp. 945–953, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. M. Andreucci, “Contrast media and nephrotoxicity: a molecular conundrum,” Giornale Italiano di Nefrologia, vol. 28, no. 4, p. 355, 2011.