About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2014 (2014), Article ID 281912, 10 pages
http://dx.doi.org/10.1155/2014/281912
Research Article

Microsatellites in the Genome of the Edible Mushroom, Volvariella volvacea

1National Engineering Research Center of Edible Fungi and Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture and Shanghai Key Laboratory of Agricultural Genetics and Breeding and Institute of Edible Fungi, Shanghai Academy of Agriculture Science, Shanghai 201403, China
2Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China

Received 2 October 2013; Revised 23 October 2013; Accepted 23 October 2013; Published 19 January 2014

Academic Editor: Yudong Cai

Copyright © 2014 Ying Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Bao, M. Gong, H. Zheng, et al., “Sequencing and comparative analysis of the straw mushroom (Volvariella volvacea) genome,” PLoS ONE, vol. 8, no. 3, Article ID e58294, 2013.
  2. G. Thiribhuvanamala, S. Krishnamoorthy, K. Manoranjitham, V. Praksasm, and S. Krishnan, “Improved techniques to enhance the yield of paddy straw mushroom (Volvariella volvacea) for commercial cultivation,” African Journal of Biotechnology, vol. 11, no. 64, pp. 12740–12748, 2012.
  3. Y. J. Cai, S. J. Chapman, J. A. Buswell, and S.-T. Chang, “Production and distribution of endoglucanase, cellobiohydrolase, and β- glucosidase components of the cellulolytic system of Volvariella volvacea, the edible straw mushroom,” Applied and Environmental Microbiology, vol. 65, no. 2, pp. 553–559, 1999. View at Scopus
  4. S. T. Chang, “Mushroom research and development-equality and mutual benefit,” Mushroom Biology and Mushroom Products, pp. 1–10, 1996.
  5. S. V. Kalava and S. G. Menon, “Protective efficacy of the extract of volvariella volvacea (bulliard ex fries) singer. against carbon tetrachloride induced hepatic injury,” International Journal of Pharmaceutical Sciences and Research, vol. 3, no. 8, pp. 2849–2856, 2012.
  6. L. Ramkumar, T. Ramanathan, and J. Johnprabagaran, “Evaluation of nutrients, trace metals and antioxidant activity in Volvariella volvacea (Bull. Ex. Fr.) Sing,” Emirates Journal of Food and Agriculture, vol. 24, no. 2, pp. 113–119, 2012.
  7. B. Z. Chen, F. Gui, B. G. Xie, F. Zou, Y. J. Jiang, and Y. J. Deng, “Sequence and comparative analysis of the MIP gene in Chinese straw mushroom, Volvariella volvacea,” Genome, vol. 55, no. 9, pp. 667–672, 2012.
  8. D. Field and C. Wills, “Long, polymorphic microsatellites in simple organisms,” Proceedings of the Royal Society B, vol. 263, no. 1367, pp. 209–215, 1996. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Tóth, Z. Gáspári, and J. Jurka, “Microsatellites in different eukaryotic genomes: surveys and analysis,” Genome Research, vol. 10, no. 7, pp. 967–981, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Rufai, M. M. Hanafi, M. Y. Rafii, S. Ahmad, I. W. Arolu, and J. Ferdous, “Genetic dissection of new genotypes of drumstick tree (Moringa oleifera Lam.) using random amplified polymorphic DNA marker,” BioMed Research International, vol. 2013, Article ID 604598, 6 pages, 2013. View at Publisher · View at Google Scholar
  11. H. Ellegren, “Microsatellites: simple sequences with complex evolution,” Nature Reviews Genetics, vol. 5, no. 6, pp. 435–445, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Guichoux, L. Lagache, S. Wagner et al., “Current trends in microsatellite genotyping,” Molecular Ecology Resources, vol. 11, no. 4, pp. 591–611, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. N. Mittal and A. K. Dubey, “Microsatellite markers—a new practice of DNA based markers in molecular genetics,” Pharmacognosy Reviews, vol. 3, no. 6, pp. 235–246, 2009. View at Scopus
  14. C. Spampinato and D. Leonardi, “Molecular fingerprints to identify Candida species,” BioMed Research International, vol. 2013, Article ID 923742, 10 pages, 2013. View at Publisher · View at Google Scholar
  15. J. Labbé, C. Murat, E. Morin, F. Le Tacon, and F. Martin, “Survey and analysis of simple sequence repeats in the Laccaria bicolor genome, with development of microsatellite markers,” Current Genetics, vol. 57, no. 2, pp. 75–88, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. M. J. Lawson and L. Zhang, “Distinct patterns of SSR distribution in the Arabidopsis thaliana and rice genomes,” Genome Biology, vol. 7, no. 2, article R14, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. J. J. Rudd, J. Antoniw, R. Marshall, J. Motteram, B. Fraaije, and K. Hammond-Kosack, “Identification and characterisation of Mycosphaerella graminicola secreted or surface-associated proteins with variable intragenic coding repeats,” Fungal Genetics and Biology, vol. 47, no. 1, pp. 19–32, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Murat, C. Riccioni, B. Belfiori et al., “Distribution and localization of microsatellites in the Perigord black truffle genome and identification of new molecular markers,” Fungal Genetics and Biology, vol. 48, no. 6, pp. 592–601, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. J. G. Gibbons and A. Rokas, “Comparative and functional characterization of intragenic tandem repeats in 10 Aspergillus genomes,” Molecular Biology and Evolution, vol. 26, no. 3, pp. 591–602, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. K. J. Verstrepen, A. Jansen, F. Lewitter, and G. R. Fink, “Intragenic tandem repeats generate functional variability,” Nature Genetics, vol. 37, no. 9, pp. 986–990, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. C. Li, A. B. Korol, T. Fahima, and E. Nevo, “Microsatellites within genes: structure, function, and evolution,” Molecular Biology and Evolution, vol. 21, no. 6, pp. 991–1007, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Feng, H. Tong, Y. Chen, et al., “Development of pineapple microsatellite markers and germplasm genetic diversity analysis,” BioMed Research International, vol. 2013, Article ID 317912, 11 pages, 2013. View at Publisher · View at Google Scholar
  23. C. Dutech, J. Enjalbert, E. Fournier et al., “Challenges of microsatellite isolation in fungi,” Fungal Genetics and Biology, vol. 44, no. 10, pp. 933–949, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Qian, H. Xu, J. Song, J. Xu, Y. Zhu, and S. Chen, “Genome-wide analysis of simple sequence repeats in the model medicinal mushroom Ganoderma lucidum,” Gene, vol. 512, no. 2, pp. 331–336, 2013. View at Publisher · View at Google Scholar
  25. J. Jurka and C. Pethiyagoda, “Simple repetitive DNA sequences from primates: compilation and analysis,” Journal of Molecular Evolution, vol. 40, no. 2, pp. 120–126, 1995. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Y. Li, L. Liu, J. Yang, et al., “Genome-wide analysis of microsatellite sequence in seven filamentous fungi,” Interdisciplinary Sciences, vol. 1, no. 2, pp. 141–150, 2009.
  27. H. Karaoglu, C. M. Y. Lee, and W. Meyer, “Survey of simple sequence repeats in completed fungal genomes,” Molecular Biology and Evolution, vol. 22, no. 3, pp. 639–649, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Ye, L. Fang, H. Zheng et al., “WEGO: a web tool for plotting GO annotations,” Nucleic Acids Research, vol. 34, pp. W293–W297, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. P. Jarne and P. J. L. Lagoda, “Microsatellites, from molecules to populations and back,” Trends in Ecology and Evolution, vol. 11, no. 10, pp. 424–429, 1996. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Luikart, P. R. England, D. Tallmon, S. Jordan, and P. Taberlet, “The power and promise of population genomics: from genotyping to genome typing,” Nature Reviews Genetics, vol. 4, no. 12, pp. 981–994, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. F. Martin, A. Kohler, C. Murat, et al., “Perigord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis,” Nature, vol. 464, no. 7291, pp. 1033–1038, 2010.
  32. V. Albanèse, N. F. Biguet, H. Kiefer, E. Bayard, J. Mallet, and R. Meloni, “Quantitative effects on gene silencing by allelic variation at a tetranucleotide microsatellite,” Human Molecular Genetics, vol. 10, no. 17, pp. 1785–1792, 2001. View at Scopus
  33. Y. D. Kelkar, N. Strubczewski, S. E. Hile, F. Chiaromonte, K. A. Eckert, and K. D. Makova, “What is a microsatellite: a computational and experimental definition based upon repeat mutational behavior at A/T and GT/AC repeats,” Genome Biology and Evolution, vol. 2, no. 1, pp. 620–635, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. C. E. Pearson, K. N. Edamura, and J. D. Cleary, “Repeat instability: mechanisms of dynamic mutations,” Nature Reviews Genetics, vol. 6, no. 10, pp. 729–742, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. E. Meglecz, G. Nève, E. Biffin, and M. G. Gardner, “Breakdown of phylogenetic signal: a survey of microsatellite densities in 454 shotgun sequences from 154 non model eukaryote species,” PLoS ONE, vol. 7, no. 7, Article ID e40861, 2012.
  36. O. Rose and D. Falush, “A threshold size for microsatellite expansion,” Molecular Biology and Evolution, vol. 15, no. 5, pp. 613–615, 1998. View at Scopus
  37. K. J. Dechering, K. Cuelenaere, R. N. H. Konings, and J. A. M. Leunissen, “Distinct frequency-distributions of homopolymeric DNA tracts in different genomes,” Nucleic Acids Research, vol. 26, no. 17, pp. 4056–4062, 1998. View at Scopus
  38. Y. Lai and F. Sun, “The relationship between microsatellite slippage mutation rate and the number of repeat units,” Molecular Biology and Evolution, vol. 20, no. 12, pp. 2123–2131, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. D. Metzgar, J. Bytof, and C. Wills, “Selection against frameshift mutations limits microsatellite expansion in coding DNA,” Genome Research, vol. 10, no. 1, pp. 72–80, 2000. View at Scopus
  40. S. Temnykh, G. DeClerck, A. Lukashova, L. Lipovich, S. Cartinhour, and S. McCouch, “Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential,” Genome Research, vol. 11, no. 8, pp. 1441–1452, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. C. Li, A. B. Korol, T. Fahima, A. Beiles, and E. Nevo, “Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review,” Molecular Ecology, vol. 11, no. 12, pp. 2453–2465, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Subramanian, R. K. Mishra, and L. Singh, “Genome-wide analysis of microsatellite repeats in humans: their abundance and density in specific genomic regions,” Genome Biology, vol. 4, no. 2, p. R13, 2003. View at Scopus
  43. D. E. Riley and J. N. Krieger, “UTR dinucleotide simple sequence repeat evolution exhibits recurring patterns including regulatory sequence motif replacements,” Gene, vol. 429, no. 1-2, pp. 80–86, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. M. D. Vinces, M. Legendre, M. Caldara, M. Hagihara, and K. J. Verstrepen, “Unstable tandem repeats in promoters confer transcriptional evolvability,” Science, vol. 324, no. 5931, pp. 1213–1216, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. T. D. Murphy and G. H. Karpen, “Localization of centromere function in a Drosophila minichromosome,” Cell, vol. 82, no. 4, pp. 599–609, 1995. View at Scopus