About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2014 (2014), Article ID 327395, 10 pages
http://dx.doi.org/10.1155/2014/327395
Clinical Study

Endothelial Function Increases after a 16-Week Diet and Exercise Intervention in Overweight and Obese Young Women

Department of Kinesiology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1

Received 31 October 2013; Accepted 10 February 2014; Published 20 March 2014

Academic Editor: Ramaroson Andriantsitohaina

Copyright © 2014 Lisa M. Cotie et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Teragawa, K. Ueda, K. Matsuda et al., “Relationship between endothelial function in the coronary and brachial arteries,” Clinical Cardiology, vol. 28, no. 10, pp. 460–466, 2005. View at Scopus
  2. P. O. Bonetti, L. O. Lerman, and A. Lerman, “Endothelial dysfunction: a marker of atherosclerotic risk,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 2, pp. 168–175, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. J. A. Vita and J. F. Keaney Jr., “Endothelial function: a barometer for cardiovascular risk?” Circulation, vol. 106, no. 6, pp. 640–642, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. M. A. Black, N. T. Cable, D. H. J. Thijssen, and D. J. Green, “Impact of age, sex, and exercise on brachial artery flow-mediated dilatation,” American Journal of Physiology, vol. 297, no. 3, pp. H1109–H1116, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. P. A. Ades, P. D. Savage, S. Lischke et al., “The effect of weight loss and exercise training on flow-mediated dilatation in coronary heart disease: a randomized trial,” Chest, vol. 140, no. 6, pp. 1420–1427, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Buscemi, L. Cosentino, G. Rosafio, et al., “Effects of hypocaloric diets with different glycemic indexes on endothelial function and glycemic variability in overweight and in obese adult patients at increased cardiovascular risk,” Clinical Nutrition, vol. 32, no. 3, pp. 346–352, 2013. View at Publisher · View at Google Scholar
  7. S. J. Bigornia, M. M. Mott, D. T. Hess et al., “Long-term successful weight loss improves vascular endothelial function in severely obese individuals,” Obesity, vol. 18, no. 4, pp. 754–759, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Mavri, P. Poredoš, D. Šuran, B. Gaborit, I. Juhan-Vague, and P. Poredoš, “Effect of diet-induced weight loss on endothelial dysfunction: early improvement after the first week of dieting,” Heart and Vessels, vol. 26, no. 1, pp. 31–38, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Vila and M. Salaices, “Cytokines and vascular reactivity in resistance arteries,” American Journal of Physiology, vol. 288, no. 3, pp. H1016–H1021, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Iglarz and M. Clozel, “Mechanisms of ET-1-induced endothelial dysfunction,” Journal of Cardiovascular Pharmacology, vol. 50, no. 6, pp. 621–628, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. J. A. Vita, J. F. Keaney Jr., M. G. Larson et al., “Brachial artery vasodilator function and systemic inflammation in the framingham offspring study,” Circulation, vol. 110, no. 23, pp. 3604–3609, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. V. Mohamed-Ali, S. Goodrick, A. Rawesh et al., “Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-α, in vivo,” Journal of Clinical Endocrinology and Metabolism, vol. 82, no. 12, pp. 4196–4200, 1997. View at Scopus
  13. J. S. Yudkin, M. Kumari, S. E. Humphries, and V. Mohamed-Ali, “Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link?” Atherosclerosis, vol. 148, no. 2, pp. 209–214, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. C. P. Lambert, N. R. Wright, B. N. Finck, and D. T. Villareal, “Exercise but not diet-induced weight loss decreases skeletal muscle inflammatory gene expression in frail obese elderly persons,” Journal of Applied Physiology, vol. 105, no. 2, pp. 473–478, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. V. M. Mendoza-Núñez, Á. García-Sánchez, M. Sánchez-Rodríguez, R. E. Galván-Duarte, and M. E. Fonseca-Yerena, “Overweight, waist circumference, age, gender, and insulin resistance as risk factors for hyperleptinemia,” Obesity Research, vol. 10, no. 4, pp. 253–259, 2002. View at Scopus
  16. A. E. Schutte, H. W. Huisman, R. Schutte et al., “Adipokines and cardiometabolic function: how are they interlinked?” Regulatory Peptides, vol. 164, no. 2-3, pp. 133–138, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Rattazzi, M. Puato, E. Faggin, B. Bertipaglia, A. Zambon, and P. Pauletto, “C-reactive protein and interleukin-6 in vascular disease: culprits or passive bystanders?” Journal of Hypertension, vol. 21, no. 10, pp. 1787–1803, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. L. U. Monzillo, O. Hamdy, E. S. Horton et al., “Effect of lifestyle modification on adipokine levels in obese subjects with insulin resistance,” Obesity Research, vol. 11, no. 9, pp. 1048–1054, 2003. View at Scopus
  19. S. K. Fried, D. A. Bunkin, and A. S. Greenberg, “Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid,” Journal of Clinical Endocrinology and Metabolism, vol. 83, no. 3, pp. 847–850, 1998. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Miyaki, S. Maeda, M. Yoshizawa et al., “Effect of habitual aerobic exercise on body weight and arterial function in overweight and obese men,” American Journal of Cardiology, vol. 104, no. 6, pp. 823–828, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Rakobowchuk, C. L. McGowan, P. C. De Groot, J. W. Hartman, S. M. Phillips, and M. J. MacDonald, “Endothelial function of young healthy males following whole body resistance training,” Journal of Applied Physiology, vol. 98, no. 6, pp. 2185–2190, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. H. R. Kwon, K. W. Min, H. J. Ahn, et al., “Effects of aerobic exercise vs. resistance training on endothelial function in women with type 2 diabetes mellitus,” Diabetes & Metabolism Journal, vol. 35, no. 4, pp. 364–373, 2011.
  23. T. Okamoto, M. Masuhara, and K. Ikuta, “Combined aerobic and resistance training and vascular function: effect of aerobic exercise before and after resistance training,” Journal of Applied Physiology, vol. 103, no. 5, pp. 1655–1661, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Maiorana, G. O'Driscoll, C. Cheetham et al., “The effect of combined aerobic and resistance exercise training on vascular function in type 2 diabetes,” Journal of the American College of Cardiology, vol. 38, no. 3, pp. 860–866, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. A. R. Josse, S. A. Atkinson, M. A. Tarnopolsky, and S. M. Phillips, “Increased consumption of dairy foods and protein during diet- and exercise-induced weight loss promotes fat mass loss and lean mass gain in overweight and obese premenopausal women,” Journal of Nutrition, vol. 141, no. 9, pp. 1626–1634, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. G. J. Welk, J. J. McClain, J. C. Eisenmann, and E. E. Wickel, “Field validation of the MTI actigraph and bodymedia armband monitor using the IDEEA monitor,” Obesity, vol. 15, no. 4, pp. 918–928, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. M. C. Corretti, T. J. Anderson, E. J. Benjamin et al., “Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the international brachial artery reactivity task force,” Journal of the American College of Cardiology, vol. 39, no. 2, pp. 257–265, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. D. H. Thijssen, M. A. Black, K. E. Pyke, et al., “Assessment of flow-mediated dilation in humans: a methodological and physiological guideline,” American Journal of Physiology, vol. 300, no. 1, pp. H2–H12, 2011. View at Publisher · View at Google Scholar
  29. A. A. Martin, L. M. Cotie, B. W. Timmons, et al., “Arterial structure and function in ambulatory adolescents with cerebral palsy are not different from healthy controls,” International Journal of Pediatrics, vol. 2012, Article ID 168209, 8 pages, 2012. View at Publisher · View at Google Scholar
  30. A. E. Donald, M. Charakida, T. J. Cole et al., “Non-invasive assessment of endothelial function. Which technique?” Journal of the American College of Cardiology, vol. 48, no. 9, pp. 1846–1850, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. B. A. Parker, T. L. Trehearn, and J. R. Meendering, “Pick your Poiseuille: normalizing the shear stimulus in studies of flow-mediated dilation,” Journal of Applied Physiology, vol. 107, no. 4, pp. 1357–1359, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. R. R. Pate, J. R. O'Neill, and F. Lobelo, “The evolving definition of ‘edentary’,” Exercise and Sport Sciences Reviews, vol. 36, no. 4, pp. 173–178, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. K. I. Proper, A. S. Singh, W. Van Mechelen, and M. J. M. Chinapaw, “Sedentary behaviors and health outcomes among adults: a systematic review of prospective studies,” American Journal of Preventive Medicine, vol. 40, no. 2, pp. 174–182, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. D. J. Green, A. Maiorana, G. O'Driscoll, and R. Taylor, “Effect of exercise training on endothelium-derived nitric oxide function in humans,” Journal of Physiology, vol. 561, part 1, pp. 1–25, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. D. L. Swift, C. P. Earnest, S. N. Blair, and T. S. Church, “The effect of different doses of aerobic exercise training on endothelial function in postmenopausal women with elevated blood pressure: results from the DREW study,” British Journal of Sports Medicine, vol. 46, no. 10, pp. 753–758, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. S. D. Patterson, M. Leggate, M. A. Nimmo, and R. A. Ferguson, “Circulating hormone and cytokine response to low-load resistance training with blood flow restriction in older men,” European Journal of Applied Physiology, vol. 113, no. 3, pp. 713–719, 2013. View at Publisher · View at Google Scholar
  37. M. D. Phillips, et al., “Resistance training reduces subclinical inflammation in obese, postmenopausal women,” Medicine and Science in Sports and Exercise, vol. 44, no. 11, pp. 2099–2110, 2012.
  38. P. Lucotti, L. D. Monti, E. Setola et al., “Aerobic and resistance training effects compared to aerobic training alone in obese type 2 diabetic patients on diet treatment,” Diabetes Research and Clinical Practice, vol. 94, no. 3, pp. 395–403, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. Ö. Kasmay, N. Ergen, S. Bilsel et al., “Diet-supported aerobic exercise reduces blood endothelin-1 and nitric oxide levels in individuals with impaired glucose tolerance,” Journal of Clinical Lipidology, vol. 4, no. 5, pp. 427–434, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Maeda, T. Tanabe, T. Miyauchi et al., “Aerobic exercise training reduces plasma endothelin-1 concentration in older women,” Journal of Applied Physiology, vol. 95, no. 1, pp. 336–341, 2003. View at Scopus
  41. S. Maeda, T. Miyauchi, M. Iemitsu, J. Sugawara, Y. Nagata, and K. Goto, “Resistance exercise training reduces plasma endothelin-1 concentration in healthy young humans,” Journal of Cardiovascular Pharmacology, vol. 44, supplement 1, pp. S443–S446, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. M. D. Delp and M. H. Laughlin, “Time course of enhanced endothelium-mediated dilation in aorta of trained rats,” Medicine and Science in Sports and Exercise, vol. 29, no. 11, pp. 1454–1461, 1997. View at Publisher · View at Google Scholar · View at Scopus
  43. M. D. Delp, R. M. McAllister, and M. H. Laughlin, “Exercise training alters endothelium-dependent vasoreactivity of rat abdominal aorta,” Journal of Applied Physiology, vol. 75, no. 3, pp. 1354–1363, 1993. View at Scopus
  44. W. C. Sessa, K. Pritchard, N. Seyedi, J. Wang, and T. H. Hintze, “Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression,” Circulation Research, vol. 74, no. 2, pp. 349–353, 1994. View at Scopus
  45. D. Sun, A. Huang, A. Koller, and G. Kaley, “Short-term daily exercise activity enhances endothelial NO synthesis in skeletal muscle arterioles of rats,” Journal of Applied Physiology, vol. 76, no. 5, pp. 2241–2247, 1994. View at Scopus
  46. T. M. Tinken, D. H. J. Thijssen, M. A. Black, N. T. Cable, and D. J. Green, “Time course of change in vasodilator function and capacity in response to exercise training in humans,” Journal of Physiology, vol. 586, no. 20, pp. 5003–5012, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. B. M. Prior, P. G. Lloyd, H. T. Yang, and R. L. Terjung, “Exercise-induced vascular remodeling,” Exercise and Sport Sciences Reviews, vol. 31, no. 1, pp. 26–33, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. M. D. Brown, “Exercise and coronary vascular remodelling in the healthy heart,” Experimental Physiology, vol. 88, no. 5, pp. 645–658, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. M. H. Laughlin, L. J. Rubin, J. W. E. Rush, E. M. Price, W. G. Schrage, and C. R. Woodman, “Short-term training enhances endothelium-dependent dilation of coronary arteries, not arterioles,” Journal of Applied Physiology, vol. 94, no. 1, pp. 234–244, 2003. View at Scopus
  50. M. H. Laughlin, “Endothelium-mediated control of coronary vascular tone after chronic exercise training,” Medicine and Science in Sports and Exercise, vol. 27, no. 8, pp. 1135–1144, 1995. View at Scopus
  51. B. A. Kingwell, K. L. Berry, J. D. Cameron, C. L. Jennings, and A. M. Dart, “Arterial compliance increases after moderate-intensity cycling,” American Journal of Physiology, vol. 273, no. 5, pp. H2186–H2191, 1997. View at Scopus
  52. R. Bergholm, S. Mäkimattila, M. Valkonen et al., “Intense physical training decreases circulating antioxidants and endothelium-dependent vasodilatation in vivo,” Atherosclerosis, vol. 145, no. 2, pp. 341–349, 1999. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Maiorana, G. O'Driscoll, L. Dembo, C. Goodman, R. Taylor, and D. Green, “Exercise training, vascular function, and functional capacity in middle-aged subjects,” Medicine and Science in Sports and Exercise, vol. 33, no. 12, pp. 2022–2028, 2001. View at Scopus
  54. A. Maiorana, G. O'Driscoll, L. Dembo et al., “Effect of aerobic and resistance exercise training on vascular function in heart failure,” American Journal of Physiology, vol. 279, no. 4, pp. H1999–H2005, 2000. View at Scopus
  55. R. Hambrecht, A. Wolf, S. Gielen et al., “Effect of exercise on coronary endothelial function in patients with coronary artery disease,” The New England Journal of Medicine, vol. 342, no. 7, pp. 454–460, 2000. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Sciacqua, M. Candigliota, R. Ceravolo et al., “Weight loss in combination with physical activity improves endothelial dysfunction in human obesity,” Diabetes Care, vol. 26, no. 6, pp. 1673–1678, 2003. View at Publisher · View at Google Scholar · View at Scopus