About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2014 (2014), Article ID 348539, 11 pages
http://dx.doi.org/10.1155/2014/348539
Review Article

A Novel Strategy for Inducing the Antitumor Effects of Triterpenoid Compounds: Blocking the Protumoral Functions of Tumor-Associated Macrophages via STAT3 Inhibition

Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan

Received 1 January 2014; Accepted 4 February 2014; Published 11 March 2014

Academic Editor: Masahisa Jinushi

Copyright © 2014 Yukio Fujiwara et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. A. Stefater, S. Ren, R. A. Lang, and J. S. Duffield, “Metchnikoff's policemen: macrophages in development, homeostasis and regeneration,” Trends in Molecular Medicine, vol. 17, no. 12, pp. 743–752, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. J. W. Pollard, “Trophic macrophages in development and disease,” Nature Reviews Immunology, vol. 9, no. 4, pp. 259–270, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. F. Porcheray, S. Viaud, A.-C. Rimaniol et al., “Macrophage activation switching: an asset for the resolution of inflammation,” Clinical and Experimental Immunology, vol. 142, no. 3, pp. 481–489, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Gordon, “Alternative activation of macrophages,” Nature Reviews Immunology, vol. 3, pp. 23–35, 2003.
  5. D. M. Mosser, “The many faces of macrophage activation,” Journal of Leukocyte Biology, vol. 73, no. 2, pp. 209–212, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Mantovani, A. Sica, S. Sozzani, P. Allavena, A. Vecchi, and M. Locati, “The chemokine system in diverse forms of macrophage activation and polarization,” Trends in Immunology, vol. 25, no. 12, pp. 677–686, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Goerdt and C. E. Orfanos, “Other functions, other genes: alternative activation of antigen-presenting cells,” Immunity, vol. 10, no. 2, pp. 137–142, 1999. View at Scopus
  8. F. O. Martinez, S. Gordon, M. Locati, and A. Mantovani, “Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression,” Journal of Immunology, vol. 177, no. 10, pp. 7303–7311, 2006. View at Scopus
  9. A. Mantovani, T. Schioppa, S. K. Biswas, F. Marchesi, P. Allavena, and A. Sica, “Tumor-associated macrophages and dendritic cells as prototypic type II polarized myeloid populations,” Tumori, vol. 89, no. 5, pp. 459–468, 2003. View at Scopus
  10. A. Sica, T. Schioppa, A. Mantovani, and P. Allavena, “Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy,” European Journal of Cancer, vol. 42, no. 6, pp. 717–727, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. C. E. Lewis and J. W. Pollard, “Distinct role of macrophages in different tumor microenvironments,” Cancer Research, vol. 66, no. 2, pp. 605–612, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Hagemann, S. K. Biswas, T. Lawrence, A. Sica, and C. E. Lewis, “Regulation of macrophage function in tumors: the multifaceted role of NF-κB,” Blood, vol. 113, no. 14, pp. 3139–3146, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. J. A. Joyce and J. W. Pollard, “Microenvironmental regulation of metastasis,” Nature Reviews Cancer, vol. 9, no. 4, pp. 239–252, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Sica, P. Larghi, A. Mancino et al., “Macrophage polarization in tumour progression,” Seminars in Cancer Biology, vol. 18, no. 5, pp. 349–355, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Komohara, M. Jinushi, and M. Takeya, “Clinical significance of macrophage heterogeneity in human malignant tumors,” Cancer Science, vol. 105, pp. 1–8, 2014.
  16. Y. Komohara, J. Hirahara, T. Horikawa et al., “AM-3K, an anti-macrophage antibody, recognizes CD163, a molecule associated with an anti-inflammatory macrophage phenotype,” Journal of Histochemistry and Cytochemistry, vol. 54, no. 7, pp. 763–771, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Komohara, K. Ohnishi, J. Kuratsu, and M. Takeya, “Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas,” Journal of Pathology, vol. 216, no. 1, pp. 15–24, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Komohara, D. Niino, Y. Saito et al., “Clinical significance of CD163+ tumor-associated macrophages in patients with adult T-cell leukemia/lymphoma,” Cancer Science, vol. 104, pp. 945–951, 2013.
  19. M. A. A. Zaki, N. Wada, J. Ikeda et al., “Prognostic implication of types of tumor-associated macrophages in Hodgkin lymphoma,” Virchows Archiv, vol. 459, no. 4, pp. 361–366, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Komohara, H. Hasita, K. Ohnishi et al., “Macrophage infiltration and its prognostic relevance in clear cell renal cell carcinoma,” Cancer Science, vol. 102, no. 7, pp. 1424–1431, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Hasita, Y. Komohara, H. Okabe et al., “Significance of alternatively activated macrophages in patients with intrahepatic cholangiocarcinoma,” Cancer Science, vol. 101, no. 8, pp. 1913–1919, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. B. O. Fabriek, M. M. J. Polfliet, R. P. M. Vloet et al., “The macrophage CD163 surface glycoprotein is an erythroblast adhesion receptor,” Blood, vol. 109, no. 12, pp. 5223–5229, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. L. C. Bover, M. Cardó-Vila, A. Kuniyasu et al., “A previously unrecognized protein-protein interaction between TWEAK and CD163: potential biological implications,” Journal of Immunology, vol. 178, no. 12, pp. 8183–8194, 2007. View at Scopus
  24. M. Kristiansen, J. H. Graversen, C. Jacobsen et al., “Identification of the haemoglobin scavenger receptor,” Nature, vol. 409, no. 6817, pp. 198–201, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. J. G. Calvert, D. E. Slade, S. L. Shields et al., “CD163 expression confers susceptibility to porcine reproductive and respiratory syndrome viruses,” Journal of Virology, vol. 81, no. 14, pp. 7371–7379, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. B. O. Fabriek, R. V. Bruggen, D. M. Deng et al., “The macrophage scavenger receptor CD163 functions as an innate immune sensor for bacteria,” Blood, vol. 113, no. 4, pp. 887–892, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. P. Philippidis, J. C. Mason, B. J. Evans et al., “Hemoglobin scavenger receptor CD163 mediates interleukin-10 release and heme oxygenase-1 synthesis: antiinflammatory monocyte-macrophage responses in vitro, in resolving skin blisters in vivo, and after cardiopulmonary bypass surgery,” Circulation Research, vol. 94, no. 1, pp. 119–126, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. C. A. Schaer, G. Schoedon, A. Imhof, M. O. Kurrer, and D. J. Schaer, “Constitutive endocytosis of CD163 mediates hemoglobin-heme uptake and determines the noninflammatory and protective transcriptional response of macrophages to hemoglobin,” Circulation Research, vol. 99, no. 9, pp. 943–950, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Fujiwara, Y. Komohara, T. Ikeda, and M. Takeya, “Corosolic acid inhibits glioblastoma cell proliferation by suppressing the activation of signal transducer and activator of transcription-3 and nuclear factor-kappa B in tumor cells and tumor-associated macrophages,” Cancer Science, vol. 102, no. 1, pp. 206–211, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Yu, M. Kortylewski, and D. Pardoll, “Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment,” Nature Reviews Immunology, vol. 7, no. 1, pp. 41–51, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Matsukawa, K. Takeda, S. Kudo, T. Maeda, M. Kagayama, and S. Akira, “Aberrant inflammation and lethality to septic peritonitis in mice lacking STAT3 in macrophages and neutrophils,” Journal of Immunology, vol. 171, no. 11, pp. 6198–6205, 2003. View at Scopus
  32. K. Takeda, B. E. Clausen, T. Kaisho et al., “Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of stat3 in macrophages and neutrophils,” Immunity, vol. 10, no. 1, pp. 39–49, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Sica and V. Bronte, “Altered macrophage differentiation and immune dysfunction in tumor development,” Journal of Clinical Investigation, vol. 117, no. 5, pp. 1155–1166, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Xu, R. Ge, J. Du et al., “Corosolic acid induces apoptosis through mitochondrial pathway and caspases activation in human cervix adenocarcinoma HeLa cells,” Cancer Letters, vol. 284, no. 2, pp. 229–237, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. M. S. Lee, C. M. Lee, E. Y. Cha et al., “Activation of AMP-activated protein kinase on human gastric cancer cells by apoptosis induced by corosolic acid isolated from Weigela subsessilis,” Phytotherapy Research, vol. 24, no. 12, pp. 1857–1861, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. M. S. Lee, E. Y. Cha, P. T. Thuong, J. Y. Kim, M. S. Ahn, and J. Y. Sul, “Down-regulation of human epidermal growth factor receptor 2/neu oncogene by corosolic acid induces cell cycle arrest and apoptosis in NCI-N87 human gastric cancer cells,” Biological and Pharmaceutical Bulletin, vol. 33, no. 6, pp. 931–937, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. X. Wang, H. Bai, X. Zhang et al., “Inhibitory effect of oleanolic acid on hepatocellular carcinoma via ERK-p53-mediated cell cycle arrest and mitochondrial-dependent apoptosis,” Carcinogenesis, vol. 34, pp. 1323–1330, 2013.
  38. B. Chakravarti, R. Maurya, J. A. Siddiqui et al., “In vitro anti-breast cancer activity of ethanolic extract of Wrightia tomentosa: role of pro-apoptotic effects of oleanolic acid and urosolic acid,” Journal of Ethnopharmacology, vol. 142, pp. 72–79, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. M.-H. Shyu, T.-C. Kao, and G.-C. Yen, “Oleanolic acid and ursolic acid induce apoptosis in HuH7 human hepatocellular carcinoma cells through a mitochondrial-dependent pathway and downregulation of XIAP,” Journal of Agricultural and Food Chemistry, vol. 58, no. 10, pp. 6110–6118, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. N. H. Thoennissen, G. B. Iwanski, N. B. Doan, et al., “Cucurbitacin B induces apoptosis by inhibition of the JAK/STAT pathway and potentiates antiproliferative effects of gemcitabine on pancreatic cancer cells,” Cancer Research, vol. 69, pp. 5876–5884, 2009.
  41. K. V. Gurova, J. E. Hill, C. Guo et al., “Small molecules that reactivate p53 in renal cell carcinoma reveal a NF-κB-dependent mechanism of p53 suppression in tumors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 48, pp. 17448–17453, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. Q. Liu, D. Zhao, X. Chen et al., “Determination of corosolic acid, a natural potential anti-diabetes compound, in rat plasma by high-performance liquid chromatography-mass spectrometry and its application to pharmacokinetic and bioavailability studies,” Planta Medica, vol. 77, no. 15, pp. 1707–1711, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. D. I. Gabrilovich, S. Ostrand-Rosenberg, and V. Bronte, “Coordinated regulation of myeloid cells by tumours,” Nature Reviews Immunology, vol. 12, no. 4, pp. 253–268, 2012. View at Publisher · View at Google Scholar · View at Scopus
  44. T. Condamine and D. I. Gabrilovich, “Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function,” Trends in Immunology, vol. 32, no. 1, pp. 19–25, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. J. W. Pollard, “Tumour-educated macrophages promote tumour progression and metastasis,” Nature Reviews Cancer, vol. 4, no. 1, pp. 71–78, 2004. View at Scopus
  46. J. S. Wang, T. N. Ren, and T. Xi, “Ursolic acid induces apoptosis by suppressing the expression of FoxM1 in MCF-7 human breast cancer cells,” Medical Oncology, vol. 29, no. 1, pp. 10–15, 2012. View at Publisher · View at Google Scholar · View at Scopus
  47. X. Wang, F. Zhang, L. Yang et al., “Ursolic acid inhibits proliferation and induces apoptosis of cancer cells in vitro and in vivo,” Journal of Biomedicine and Biotechnology, vol. 2011, Article ID 419343, 8 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. W. Wang, C. Zhao, D. Jou et al., “Ursolic acid inhibits the growth of colon cancer-initiating cells by targeting STAT3,” Anticancer Research, vol. 33, pp. 4279–4284, 2013.
  49. P. O. Harmand, R. Duval, C. Delage, and A. Simon, “Ursolic acid induces apoptosis through mitochondrial intrinsic pathway and caspase-3 activation in M4Beu melanoma cells,” International Journal of Cancer, vol. 114, no. 1, pp. 1–11, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. N. Gao, S. Cheng, A. Budhraja et al., “Ursolic acid induces apoptosis in human leukaemia cells and exhibits anti-leukaemic activity in nude mice through the PKB pathway,” British Journal of Pharmacology, vol. 165, no. 6, pp. 1813–1826, 2012. View at Publisher · View at Google Scholar · View at Scopus
  51. K. Liu, L. Guo, L. Miao et al., “Ursolic acid inhibits epithelial-mesenchymal transition by suppressing the expression of astrocyte-elevated gene-1 in human nonsmall cell lung cancer A549 cells,” Anticancer Drugs, vol. 24, pp. 494–503, 2013.
  52. J. Li, X. Liang, and X. Yang, “Ursolic acid inhibits growth and induces apoptosis in gemcitabine-resistant human pancreatic cancer via the JNK and PI3K/Akt/NF-kappaB pathways,” Oncology Reports, vol. 28, pp. 501–510, 2012.
  53. K. Gabrusiewicz, A. Ellert-Miklaszewska, M. Lipko, M. Sielska, M. Frankowska, and B. Kaminska, “Characteristics of the alternative phenotype of microglia/macrophages and its modulation in experimental gliomas,” PLoS ONE, vol. 6, no. 8, Article ID e23902, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. G. Germano, R. Frapolli, M. Simone et al., “Antitumor and anti-inflammatory effects of trabectedin on human myxoid liposarcoma cells,” Cancer Research, vol. 70, no. 6, pp. 2235–2244, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. T. L. Rogers and I. Holen, “Tumour macrophages as potential targets of bisphosphonates,” Journal of translational medicine, vol. 9, p. 177, 2011. View at Scopus
  56. N. Jing and D. J. Tweardy, “Targeting Stat3 in cancer therapy,” Anti-Cancer Drugs, vol. 16, no. 6, pp. 601–607, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. Y. Fujiwara, Y. Komohara, R. Kudo et al., “Oleanolic acid inhibits macrophage differentiation into the M2 phenotype and glioblastoma cell proliferation by suppressing the activation of STAT3,” Oncology Reports, vol. 26, no. 6, pp. 1533–1537, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. H. Horlad, Y. Fujiwara, K. Takemura et al., “Corosolic acid impairs tumor development and lung metastasis by inhibiting the immunosuppressive activity of myeloid-derived suppressor cells,” Molecular Nutrition and Food Research, vol. 57, pp. 1046–1054, 2013.